Uber Blog Explore v ® EN Q search

Engineering Overview Backend Culture Data/ML Mobile Security —UberAl Web

Engineering

Evolving Schemaless into a
Distributed SQL Database

February 23,2021/ Global

N
Shard Local Transactions Geo Replication

Highly-available transactions via a

Asynchronous atomic replication between
s combination of MySQL and RAFT)

\ regions; region-local strong consistency)

Flexible Document Model

Associations Multi-model support allow both relational

and document-oriented modeling; tables
can have composite primary and partition
keys

Support for one-to-many and many-to-

many relationships
Q Y P J

\ /
- 4

DOCSTORE

Materialized View

Change Data Capture

MVs partition data in a different way/|
as compared to the main table

Allow capturing changes at the source and
& 4

can be used for event-driven programming
& J

Flexible schema, not no schema!

Centralizing the complexity of
consistency

Operational reality may not be “beautiful”

https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/schemaless-sql-database/

Uber Blog lo} @ =

Engineering -

Uber’s Next Gen Push Platform on gRPC

August 16,2022 / Global

Not request/response but streaming
~ From REST-like to RPC-like
Transport is as important as anything else

Don’t reinvent the wheel

B X @ < @

In our last blog post we talked about how we went from polling for refreshing the app to a push-
based flow to build our app experience.

https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

Protocol Buffers

= APl Schema definition language
= Provides libraries for convenience
= Comparable to JSON and XML

= But better!

= Binary on the wire

edition = "2023";
package tutorial;

message Person {
string name = 1;
int32 id = 2;
string email = 3;

enum PhoneType {
PHONE_TYPE_UNSPECIFIED

= 0;
PHONE_TYPE_MOBILE
PHONE_TYPE_HOME
PHONE_TYPE_WORK

}

message PhoneNumber {
string number = 1;
PhoneType type = 2;
}

1;

innu
WN I

repeated PhoneNumber
phones = 4;

}

message AddressBook {
repeated Person people =

1
}

JSON vs. Protobuf

= Example person record in JSON (105 bytes minified)

{"name":"Alice Smith","id":12345,"email":"alice@example.com","phones":
[{"number":"555-1234" "type":1},{"number":"555-5678","type":2}1}

= Same record in Protobuf (45 bytes)

0a0b 41 6¢ 69 63 6520 536d69 7468 10b9 60 lall 61 6¢ 69 63 65 ...

= Why |s Protobuf Smaller?

JSON Protobuf
Field names Repeated as strings ("name”, "id") Integer tags (1, 2, 3...)
Integers ASCII digits (12345 = 5 bytes) Varint encoding (2 bytes)
Schema required [No (self-describing) Yes
*Human readable |Yes No

Single Table Query

SQL Query

Basic form (there are many many more bells and whistles)

SELECT <attributes>

FROM <one or more relations>

WHERE <conditions>

Call this a SFW query.

Simple SQL Query: Selection

Selection is the operation of

filtering a relation’s tuples on
some condition

*

Product

Category = ‘Gadgets’

Gizmo

$19.99 Gadgets GWorks

Powergizmo $29.99 Gadgets GWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Gizmo $19.99 Gadgets GWorks

Powergizmo $29.99 Gadgets GWorks

Simple SQL Query: Projection

Projection is the operation of
producing an output table with
tuples that have a subset of their
prior attributes

Pname, Price, Manufacturer

Product

Category = ‘Gadgets’

Gizmo $19.99 Gadgets GWorks
Powergizmo $29.99 Gadgets GWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

U

Gizmo $19.99 GWorks

Powergizmo $29.99 GWorks

Notation

Input Schema Product(PName, Price, Category, Manufacturer)

Pname, Price, Manufacturer
Product
Category = ‘Gadgets’

Output Schema Answer(PName, Price, Manfacturer)

A Few Detalls

e SQL commands are case insensitive:
Same: SELECT, Select, select
Same: Product, product

e Values are not:
Different: ‘Seattle’, ‘seattle’

e Use single quotes for constants:
‘abc’ - yes
“abc” - no

LIKE: Simple String Pattern Matching

*

Products

PName LIKE ‘“%gizmo%’

e s LIKE p: pattern matching on strings
e p may contain two special symbols:
o % = any sequence of characters
o _ = any single character

DISTINCT: Eliminating Duplicates

SELECT DISTINCT Category
~ROM Product

Versus

SELECT Category
~ROM Product

=

Category
Gadgets
Photography

Household

Category

Gadgets

Gadgets
Photography

Household

ORDER BY: Sorting the Results

PName, Price, Manufacturer

Product

Category=‘gizmo’ AND Price > 50
ORDER BY Price, PName

Ordering is ascending,
unless you specify the
DESC keyword.

Ties are broken by the
second attribute on the
ORDER BY list, etc.

LIMIT

PName, Price, Manufacturer
Product
Category=‘gizmo’ AND Price > 50
ORDER BY Price, PName
LIMIT 3

Multi-Table Query

Foreign Key constraints

® Suppose we have the following schema :

Students(cuid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

e And we want to impose the following constraint:
Only bona fide students may enroll in courses’ i.e. a student
must appear in the Students table to enroll in a class

Students Enrolled
cuid name gpa student_id cid grade
102 Bob 3.9 102 Cs1 A
123 Mary 3.8 123 CS4 A+

We say that cuid is a foreign key that refers to Students

Declaring Foreign Keys

Foreign Keys and update operations

e \What if we insert a tuple into Enrolled, but no corresponding
student?

INSERT is rejected (foreign keys are constraints)!

e \What if we delete a student?
1.Disallow the delete
2.Remove all of the courses for that student
3.SQL allows a third via NULL

DBA chooses

Keys and Foreign Keys

Company
CName StockPrice Country
GizmoWorks 25 USA
What is a foreign key vs. a key
Canon 65 Japan
here?
Hitachi 15 Japan
Product
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

20

shlomi-noach on Dec 9, 2016 - edited by shlomi-noach Edits v Contributor *°

At GitHub we do not use foreign keys, ever, anywhere.

Personally, it took me quite a few years to make up my mind about whether foreign keys are good or evil, and
for the past 3 years I'm in the unchanging strong opinion that foreign keys should not be used. Main reasons
are:

¢ FKs are in your way to shard your database. Your app is accustomed to rely on FK to maintain integrity,
instead of doing it on its own. It may even rely on FK to cascade deletes (shudder).
When eventually you want to shard or extract data out, you need to change & test the app to an unknown
extent.

e FKs are a performance impact. The fact they require indexes is likely fine, since those indexes are needed
anyhow. But the lookup made for each insert [delete is an overhead.

¢ FKs don't work well with online schema migrations.

This last bullet is not a chicken and an egg, as you might think. FKs impose a lot of constraints on what's
possible and what's not possible.

Here's an old post of mine, reviewing the first appearance of Facebook's OSC, and which includes some
thoughts on foreign keys: http://code.openark.org/blog/mysql/mk-schema-change-check-out-ideas-from-oak-
online-alter-table

Let's say you have two tables, P & C, standing for Parent & Child, respectively. There's a foreign key in C such
that each row in C points to some "parent" value in P.

Doing schema migration of C is possible. However since foreign keys have unique names, the new (migrated) C
table will have a FK with a different name than the original one.

Doing schema migration of P is just not going to work. Recall that gh-ost renames the table at the end. Alas,
when renaming a table away, the FK will move with the renamed table. To create a parent-side FK on the ghost
table, one would need to migrate C ; and because gh-ost uses async approach, P and P-ghost are never in
complete sync at any point in time (except at lock time) which makes it impossible for C to have both a FK to P
and to P-ghost. some integrity will be broken.

There's more discussion on the documentation of pt-online-schema-change

k3

@ £290 F60 #8 @22 W60 #1 ++46

https://github.com/github/gh-ost/issues/331

https://github.com/github/gh-ost/issues/331

JOINs and Aggregations

22

What is the GPA of all students enrolled in CSEE 41217

A possible (cumbersome solution) - create a new franken-table
A single attribute for each possible class:

Hundreds of attributes, most columns are NULL

Joins

Ex: Find all products under $200
manufactured in Japan; return
product names and prices.

PName, Price
Product, Company

Manufacturer = CName

AND Country="Japan’
AND Price <= 200

Ajoin
between
tables returns
all unique
combinations
of their tuples
which meet
some
specified join
condition

Joins

Product
PName Price Category
Gizmo $19 Gadgets
Powergizmo $29 Gadgets
SingleTouch $149 Photography
MultiTouch $203 Household

Manufacturer

GizmoWorks

GizmoWorks

Canon

Hitachi

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName
AND Country="Japan’
AND Price <= 200

Company

CName

GizmoWorks
Canon

Hitachi

PName

SingleTouch

Stock

Price

25

65

15

Country

USA
Japan

Japan

Price

$149

An example of SQL semantics

SELECT R.A

Input FROM R, S Output
. WHERE R.A=S.B —
1 A|B|C

1123
’ Cross T Apply
T Product Selections /

1 |3 | 5] Conditions
2 |3 3 |23 -
3 |4 3 |34
3 15 3 /3|5

-

1

Apply
Projection

~

A

B

C

3

3

4

3

3

5

/

Note: this is how SQL logically works, not actually how it's
implemented

e The preceding slide show what a join means

e Not actually how the database executes it
under the covers

Gizmo

Powergizmo

SingleTouch

MultiTouch

$10

$20

$10

$203

SELECT AVG(price)
FROM Product

WHERE Manufacturer = “GizmoWorks”

Output: $15

Gadgets GizmoWorks

Gadgets GizmoWorks
Photography Canon
Household Hitachi
SELECT COUNT(*)

FROM Product
WHERE Price > 15

Output: 2

« SQL supports several aggregation operations:
« SUM, COUNT, MIN, MAX, AVG
All operators ignore NULL, except COUNT

Simple Aggregations

Purchase

Product Date Price | Quantity

bagel 10/21 1 20
banana 10/3 0.5 10
banana 10/10 1 10

bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase :> 1%20 + 1.50%20 = 50
WHERE product = ‘bagel’

Grouping and Aggregation

Purchase(product, date, price, quantity)

SELECT product, Find total sales
SUM(price * quantity) AS TotalSales after 10/1/2005
FROM Purchase per product.

WHERE date > 10/1/2005’
GROUP BY product

Let’'s see what this means...

Grouping and Aggregation

SELECT product,
SUM(price * quantity) AS TotalSales
FROM Purchase
WHERE date > “10/1/200%’
GROUP BY product

Semantics of the query:

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

1. Compute the FROM and WHERE
clauses

FROM Purchase
WHERE date > ‘10/1/2005’

Product Date Price Quantity
FROM Bagel 10/21 1 20
|:> Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

2. Group by the attributes in the
GROUP BY

GROUP BY product

Product Date Price Quantity GROUP BY Product Date Price Quantity
Bagel 10/21 1 20 Bagel 10/21 1 20
Bagel 10/25 1.50 20 I:: > 10/25 1.50 20

Banana 10/3 0.5 10 Banana 10/3 0.5 10

Banana 10/10 1 10 10/10 1 10

3. Compute the SELECT clause: grouped
attributes and aggregates

SELECT product, SUM(price*quantity) AS TotalSales

Product Date Price Quantity

SELECT Product TotalSales
Badel 10/21 1 20
age
10/25 1.50 20 |:> Bagel 50
Banana 10/3 0.5 10 Banana 15
10/10 1 10

HAVING Clause

SELECT product, SUM(price*quantity) Same query as
FROM Purchase before, except that
WHERE date > “10/1/2005’ we consider only
GROUP BY product products that have
HAVING SUM(quantity) > 100 more than

100 buyers

HAVING clauses contains conditions on aggregates

Whereas WHERE clauses condition on individual tuples...

RECAP: Joins

By default, joins in SQL are “inner joins”:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

— Both equivalent:

.. . Both INNER JOINS!
: SELECT Product.name, Purchase.store :

. FROM Product ;
JOIN Purchase ON Product.name = Purchase.prodName :

Outer Joins

An outer join returns tuples from the joined relations that

don’t have a corresponding tuple in the other relations

* l.e. If we join relations Aand B on a.X = b.X, and there is an
entry in A with X=5, but none in B with X=5...

« ALEFT OUTER JOIN will return a tuple (a, NULL)!

Left outer joins in SQL:

SELECT Product.name, Purchase.store
FROM Product
LEFT OUTER JOIN Purchase ON
Product.name = Purchase.prodName

Now we’ll get products even if they didn’t sell

INNER JOIN

Product Purchase
name category prodName store
iPhone media iPhone Apple store
Tesla car Tesla Dealer
Ford Pinto car iPhone Apple store

name store
SELECT Product.name, Purchase.store
FROM Product ;
INNER JOIN Purchase — IPhone Apple store
ON Product.name = Purchase.prodName)
iPhone Apple store
Tesla Dealer

Note: another equivalent way to
write an INNER JOIN!

LEFT OUTER JOIN

Product
name category
iPhone media
Tesla car
Ford Pinto car

SELECT Product.name, Purchase.store
FROM Product
LEFT OUTER JOIN Purchase
ON Product.name = Purchase.prodName

Purchase
prodName store
iPhone Apple store
Tesla Dealer
iPhone Apple store
name store
iPhone Apple store
|::> iPhone Apple store
Tesla Dealer
Ford Pinto NULL

Other Outer Joins

 Left outer join:
 Include the left tuple even if there’s no match

* Right outer join:
* Include the right tuple even if there’s no match

 Full outer join:
* Include the both left and right tuples even if there’s no match

How many entries will output table
have?

» Left table has L entries
* Right table has R entries

* Inner join:
 Minimum number of entries: 0
« Maximum number of entries: L*R

 Left outer join:
* Minimum number of entries: L
« Maximum number of entries: L*R

* Right outer join:
¢ Minimum number of entries: R
« Maximum number of entries: L*R

* Full outer join:
* Minimum number of entries: L+R
 Maximum number of entries; L*R

Borrowed from Shiva Shivakumar and Theodoros Rekatsinas

Nested Queries

Can construct powerful query chains (e.g., f(g(...(x)))

Inputs / outputs are multisets

= Output of one query can be input to another (nesting)!

= Including on same table

42

Nested queries: Sub-queries Return Relations

Company(name, city)
Product(name, manufacturer)
Purchase(id, product, buyer)

1. Companies making
products bought by ‘Alice’

SELEC | Product.manutacturer . .
2. Location of companies?

FROM Purchase, Product
WHERE Purchase.product = Product.name
AND Purchase.buyer = ‘Alice®

Nested queries: Sub-queries Return Relations

Company(name, city)
Product(name, manufacturer)
Purchase(id, product, buyer)

SELECT Company.city
FROM _ Company 1. Companies makin
WHERE Company.name [N (' odpat %S ht bg Alice’
SELECT Product.manufacturer produicts bought by Alice
2. Location of companies?

FROM Purchase, Product
WHERE Purchase.product = Product.name
AND Purchase.buyer = ‘Alice’)

Subqueries Return Relations

You can also use operations of the form:

+ s>ALLR
« s<ANYR
+ EXISTSR

Example: Product(name, price, category,

maker)

SELECT name
FROM Product
WHERE price > ALL(

SELECT price
FROM Product
WHERE maker = ‘Gizmo-Works’)

Find products that are more
expensive than all those produced by
“Gizmo-Works”

SELECT p1.name

FROM Product AS p1

WHERE p1.maker = ‘Gizmo-Works’

AND EXISTS(
SELECT p2.name
FROM Product AS p2
WHERE p2.maker <> ‘Gizmo-Works’
AND p1.name = p2.name)

<> means !=

Find ‘copycat’ products, i.e. products made by
competitors with the same names as products

made by “Gizmo-Works” ,
Note the scoping

of the variables!

Example: Complex Correlated Query

Product(name, price, category, maker, year)

SELECT DISTINCT x.name, x.maker

FROM Product AS x
WHERE x.price > ALL(
SELECT y.price

FROM ProductASy
WHERE x.maker = y.maker
AND y.year < 1972)

Find products (and their
manufacturers) that are
more expensive than all
products made by the
same manufacturer
before 1972

Can be very powerful (also much harder to optimize)

Aggregates inside nested queries. Remember SQL is compositional

Hint 1: Break down query description to steps (subproblems)

Hint 2: Whenever in doubt always go back to the definition

Aggregates inside nested queries: example

Example:

“Using a single SQL query, find all of the stations that
had the highest daily precipitation (across all stations)
on any given day.”

Precipitation

station_id

day

precipitation

122

1

33

122

4

20

351

1

10

191

45

SELECT station_id, day
FROM Precipitation,

FROM precipitation
GROUP BY day)
WHERE day = maxd AND precipitation = maxp

(SELECT day AS maxd, MAX(precipitation) AS maxp

(SELECT day AS maxd, MAX(precipitation) AS maxp
FROM precipitation
GROUP BY day)

maxd maxp
1 33
4 20
7 45

Step 2

SELECT station_id, day

FROM precipitation,
(SELECT day AS maxd, MAX(precipitation) AS maxp
FROM precipitation
GROUP BY day)

WHERE day = maxd AND precipitation = maxp

station_id | day precipitation
122 1 33 maxd maxp
1 33
122 4 20
351 1 10
7 45
191 7 45 ‘
station_id day
122 1
122 4
191 7

JANUARY 29, 2020

Postmortem: Service disruption on
January 21-22,2020

@a John Firebaugh Lead Infrastructure Engineer, Figma

INSIDE FIGMA ENGINEERING

The root cause of our recent service outage and our next () () (in]
steps

TL;:DR: Why did it happen?

Tuesday's incident was primarily caused by a long-running, expensive query. To prevent this
issue from recurring, we will be improving our monitoring of expensive queries and setting
tighter bounds on allowed running time.

The root cause of Wednesday's incident was that a routine change in database statistics
caused PostgreSQL 9 to mis-plan the execution of one of our queries, causing expensive
table scans and writes to temporary buffers. This was exacerbated by concurrent aggressive
autovacuuming operations, which were happening because of a vacuuming backlog from the
long-running query that had been terminated on Tuesday.

The upgrade to PostgreSQL 11 mitigated both of these causes: improvements to the query
planner eliminated the possibility of the bad query plan, and the performance characteristics
of autovacuuming have been significantly improved between versions 9 and 11.

https://www.figma.com/blog/post-mortem-service-
disruption-on-january-21-22-2020/

https://www.figma.com/blog/post-mortem-service-disruption-on-january-21-22-2020/
https://www.figma.com/blog/post-mortem-service-disruption-on-january-21-22-2020/

