
https://www.uber.com/blog/schemaless-
sql-database/

▪ Flexible schema, not no schema!

▪ Centralizing the complexity of
consistency

▪ Operational reality may not be “beautiful”

https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/schemaless-sql-database/

https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

▪ Not request/response but streaming

▪ From REST-like to RPC-like

▪ Transport is as important as anything else

▪ Don’t reinvent the wheel

https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

Protocol Buffers

▪ API Schema definition language

▪ Provides libraries for convenience

▪ Comparable to JSON and XML

▪ But better!

▪ Binary on the wire

3

edition = "2023";

package tutorial;

message Person {
 string name = 1;
 int32 id = 2;
 string email = 3;

 enum PhoneType {
 PHONE_TYPE_UNSPECIFIED
= 0;
 PHONE_TYPE_MOBILE = 1;
 PHONE_TYPE_HOME = 2;
 PHONE_TYPE_WORK = 3;
 }

 message PhoneNumber {
 string number = 1;
 PhoneType type = 2;
 }

 repeated PhoneNumber
phones = 4;
}

message AddressBook {
 repeated Person people =
1;
}

▪ Example person record in JSON (105 bytes minified)

▪ Same record in Protobuf (45 bytes)

▪Why Is Protobuf Smaller?

4

{"name":"Alice Smith","id":12345,"email":"alice@example.com","phones":
[{"number":"555-1234","type":1},{"number":"555-5678","type":2}]}

JSON vs. Protobuf

0a 0b 41 6c 69 63 65 20 53 6d 69 74 68 10 b9 60 1a 11 61 6c 69 63 65 ...

JSON Protobuf

Field names Repeated as strings ("name", "id") Integer tags (1, 2, 3...)

Integers ASCII digits (12345 = 5 bytes) Varint encoding (2 bytes)

Schema required No (self-describing) Yes

Human readable Yes No

Single Table Query

 SQL Query

Basic form (there are many many more bells and whistles)

SELECT <attributes>

FROM <one or more relations>

WHERE <conditions>

Call this a SFW query.

Simple SQL Query: Selection

PName Price Category Manuf

Gizmo $19.99 Gadgets GWorks

Powergizmo $29.99 Gadgets GWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Selection is the operation of
filtering a relation’s tuples on
some condition

SELECT *

FROM Product

WHERE Category = ‘Gadgets’

PName Price Category Manuf

Gizmo $19.99 Gadgets GWorks

Powergizmo $29.99 Gadgets GWorks

 Simple SQL Query: Projection
PName Price Category Manuf

Gizmo $19.99 Gadgets GWorks

Powergizmo $29.99 Gadgets GWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Projection is the operation of
producing an output table with
tuples that have a subset of their
prior attributes

SELECT Pname, Price, Manufacturer

FROM Product

WHERE Category = ‘Gadgets’

PName Price Manuf

Gizmo $19.99 GWorks

Powergizmo $29.99 GWorks

Notation

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = ‘Gadgets’

Input Schema Product(PName, Price, Category, Manufacturer)

Answer(PName, Price, Manfacturer)Output Schema

A Few Details

● SQL commands are case insensitive:
 Same: SELECT, Select, select
 Same: Product, product

● Values are not:
 Different: ‘Seattle’, ‘seattle’

● Use single quotes for constants:
 ‘abc’ - yes
 “abc” - no

LIKE: Simple String Pattern Matching

SELECT *

FROM Products

WHERE PName LIKE ‘%gizmo%’

● s LIKE p: pattern matching on strings
● p may contain two special symbols:

○ % = any sequence of characters
○ _ = any single character

DISTINCT: Eliminating Duplicates

SELECT DISTINCT Category
FROM Product

Category

Gadgets

Photography

Household

Category

Gadgets

Gadgets

Photography

Household

Versus

SELECT Category
FROM Product

ORDER BY: Sorting the Results

SELECT PName, Price, Manufacturer
FROM Product
WHERE Category=‘gizmo’ AND Price > 50
ORDER BY Price, PName

Ties are broken by the
second attribute on the
ORDER BY list, etc.

Ordering is ascending,
unless you specify the
DESC keyword.

LIMIT

SELECT PName, Price, Manufacturer
FROM Product
WHERE Category=‘gizmo’ AND Price > 50
ORDER BY Price, PName
LIMIT	 5

Multi-Table Query

Foreign Key constraints

cuid name gpa

102 Bob 3.9

123 Mary 3.8

student_id cid grade

102 CS1 A

123 CS4 A+

We say that cuid is a foreign key that refers to Students

Students Enrolled

Students(cuid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

● Suppose we have the following schema :

● And we want to impose the following constraint:
Only bona fide students may enroll in courses’ i.e. a student
must appear in the Students table to enroll in a class

Declaring Foreign Keys

Students(cuid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

CREATE TABLE Enrolled (
 student_id CHAR(20),
 cid CHAR(20),
 grade CHAR(10),
 PRIMARY KEY (student_id, cid),
 FOREIGN KEY (student_id) REFERENCES Students(cuid)
)

Foreign Keys and update operations

Students(cuid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

● What if we insert a tuple into Enrolled, but no corresponding
student?

 INSERT is rejected (foreign keys are constraints)!

● What if we delete a student?
 1.Disallow the delete
 2.Remove all of the courses for that student
 3.SQL allows a third via NULL

DBA chooses

Keys and Foreign Keys

Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

What is a foreign key vs. a key
here?

https://github.com/github/gh-ost/issues/331

20

https://github.com/github/gh-ost/issues/331

JOINs and Aggregations

Trade off between table complexity and query complexity

▪What is the GPA of all students enrolled in CSEE 4121?

▪ A possible (cumbersome solution)  create a new franken-table
– A single attribute for each possible class:

– Hundreds of attributes, most columns are NULL

22

Students(cuid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

FrankenTable(student_id: string, grade_course1: string, grade_course2: string, …)

Joins
Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

Ex: Find all products under $200
manufactured in Japan; return
product names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName
 AND Country=‘Japan’
 	 AND Price <= 200

A join
between
tables returns
all unique
combinations
of their tuples
which meet
some
specified join
condition

Joins

Company
CName Stock

Price

Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product
PName Price Category Manufacturer

Gizmo $19 Gadgets GizmoWorks

Powergizmo $29 Gadgets GizmoWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName
 AND Country=‘Japan’
 	 AND Price <= 200

PName Price

SingleTouch $149

An example of SQL semantics

A

1

3

SELECT R.A
FROM R, S
WHERE R.A = S.B

A

3

3

B C

2 3

3 4

3 5

A B C

1 2 3

1 3 4

1 3 5

3 2 3

3 3 4

3 3 5

A B C

3 3 4

3 3 5

Cross
Product

Apply
Selections /
Conditions

Apply
Projection

Output

R

S

Input

● The preceding slide show what a join means

● Not actually how the database executes it
under the covers

Note: this is how SQL logically works, not actually how it’s
implemented

SELECT COUNT(*)
FROM Product
WHERE Price > 15

SELECT AVG(price)
FROM Product
WHERE Manufacturer = “GizmoWorks”

• SQL supports several aggregation operations:
• SUM, COUNT, MIN, MAX, AVG

•All operators ignore NULL, except COUNT

PName Price Category Manufacturer

Gizmo $10 Gadgets GizmoWorks

Powergizmo $20 Gadgets GizmoWorks

SingleTouch $10 Photography Canon

MultiTouch $203 Household Hitachi

Output: $15

Product

Aggregations

Output: 2

Simple Aggregations

Purchase

Product Date Price Quantity
bagel 10/21 1 20

banana 10/3 0.5 10

banana 10/10 1 10

bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

1*20 + 1.50*20 = 50

Grouping and Aggregation

SELECT product,
	 SUM(price * quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Find total sales
after 10/1/2005
per product.

Purchase(product, date, price, quantity)

Grouping and Aggregation

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

Semantics of the query:

SELECT product,
	 SUM(price * quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

1. Compute the FROM and WHERE
clauses

Product Date Price Quantity
Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM

2. Group by the attributes in the
GROUP BY

Product Date Price Quantity

Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

3. Compute the SELECT clause: grouped
attributes and aggregates

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

HAVING Clause

Same query as
before, except that
we consider only
products that have
more than
100 buyers

HAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas WHERE clauses condition on individual tuples…

RECAP: Joins

By default, joins in SQL are “inner joins”:
	

SELECT Product.name, Purchase.store
FROM Product
 JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Both equivalent:
Both INNER JOINS!

Outer Joins

• An outer join returns tuples from the joined relations that
don’t have a corresponding tuple in the other relations
• I.e. If we join relations A and B on a.X = b.X, and there is an

entry in A with X=5, but none in B with X=5…
• A LEFT OUTER JOIN will return a tuple (a, NULL)!

• Left outer joins in SQL:	 SELECT Product.name, Purchase.store
FROM Product
 LEFT OUTER JOIN Purchase ON
	 Product.name = Purchase.prodName

Now we’ll get products even if they didn’t sell

INNER JOIN

name category

iPhone media

Tesla car

Ford Pinto car

prodName store

iPhone Apple store

Tesla Dealer

iPhone Apple store

name store

iPhone Apple store

iPhone Apple store

Tesla Dealer

Product Purchase

SELECT Product.name, Purchase.store
FROM Product
 INNER JOIN Purchase
	 ON Product.name = Purchase.prodName

Note: another equivalent way to
write an INNER JOIN!

LEFT OUTER JOIN

SELECT Product.name, Purchase.store
FROM Product
 LEFT OUTER JOIN Purchase
	 ON Product.name = Purchase.prodName

name category

iPhone media

Tesla car

Ford Pinto car

prodName store

iPhone Apple store

Tesla Dealer

iPhone Apple store

Product Purchase

name store

iPhone Apple store

iPhone Apple store

Tesla Dealer

Ford Pinto NULL

Other Outer Joins

• Left outer join:
• Include the left tuple even if there’s no match

• Right outer join:
• Include the right tuple even if there’s no match

• Full outer join:
• Include the both left and right tuples even if there’s no match

How many entries will output table
have?

• Left table has L entries
• Right table has R entries

• Inner join:
• Minimum number of entries: 0
• Maximum number of entries: L*R

• Left outer join:
• Minimum number of entries: L
• Maximum number of entries: L*R

• Right outer join:
• Minimum number of entries: R
• Maximum number of entries: L*R

• Full outer join:
• Minimum number of entries: L+R
• Maximum number of entries: L*R

Nested Queries

Borrowed from Shiva Shivakumar and Theodoros Rekatsinas

SQL is Compositional

Can construct powerful query chains (e.g., f(g(...(x)))

Inputs / outputs are multisets

⇒ Output of one query can be input to another (nesting)!

⇒ Including on same table

42

Nested queries: Sub-queries Return Relations

SELECT Company.city
FROM Company
WHERE Company.name IN (
 SELECT Product.manufacturer
 FROM Purchase, Product
 WHERE Purchase.product = Product.name
	 AND Purchase.buyer = ‘Alice‘)

1. Companies making
products bought by ‘Alice’

2. Location of companies?

Company(name, city)
Product(name, manufacturer)
Purchase(id, product, buyer)

Nested queries: Sub-queries Return Relations

SELECT Company.city
FROM Company
WHERE Company.name IN (
 SELECT Product.manufacturer
 FROM Purchase, Product
 WHERE Purchase.product = Product.name
	 AND Purchase.buyer = ‘Alice‘)

1. Companies making
products bought by ‘Alice’

2. Location of companies?

Company(name, city)
Product(name, manufacturer)
Purchase(id, product, buyer)

Subqueries Return Relations

SELECT name
FROM Product
WHERE price > ALL(

 SELECT price
 FROM Product
 WHERE maker = ‘Gizmo-Works’)

Product(name, price, category,
maker)

You can also use operations of the form:
• s > ALL R
• s < ANY R
• EXISTS R

Find products that are more
expensive than all those produced by
“Gizmo-Works”

Example:

SELECT p1.name
FROM Product AS p1
WHERE p1.maker = ‘Gizmo-Works’
 AND EXISTS(
 SELECT p2.name
 FROM Product AS p2
 WHERE p2.maker <> ‘Gizmo-Works’
	 AND p1.name = p2.name)

Find ‘copycat’ products, i.e. products made by
competitors with the same names as products
made by “Gizmo-Works”

<> means !=

Note the scoping
of the variables!

Example: Complex Correlated Query

SELECT DISTINCT x.name, x.maker
FROM Product AS x
WHERE x.price > ALL(
 SELECT y.price
 FROM Product AS y
 WHERE x.maker = y.maker 	 	
AND y.year < 1972)

Find products (and their
manufacturers) that are
more expensive than all
products made by the
same manufacturer
before 1972

Product(name, price, category, maker, year)

Can be very powerful (also much harder to optimize)

Aggregates inside nested queries

1. Aggregates inside nested queries. Remember SQL is compositional

2. Hint 1: Break down query description to steps (subproblems)

3. Hint 2: Whenever in doubt always go back to the definition

Aggregates inside nested queries: example

Example:

“Using a single SQL query, find all of the stations that
had the highest daily precipitation (across all stations)
on any given day.”

SELECT station_id, day
FROM Precipitation,
	 (SELECT day AS maxd, MAX(precipitation) AS maxp
	 FROM precipitation
 GROUP BY day)
WHERE day = maxd AND precipitation = maxp

station_id day precipitation

122 1 33

122 4 20

351 1 10

191 7 45

Precipitation

Step 1
SELECT station_id, day
FROM precipitation,
	 (SELECT day AS maxd, MAX(precipitation) AS maxp
	 FROM precipitation
 GROUP BY day)
WHERE day = maxd AND precipitation = maxp

maxd maxp
1 33
4 20
7 45

Step 2
SELECT station_id, day
FROM precipitation,
	 (SELECT day AS maxd, MAX(precipitation) AS maxp
	 FROM precipitation
 GROUP BY day)
WHERE day = maxd AND precipitation = maxp

station_id day

122 1

122 4

191 7

station_id day precipitation

122 1 33

122 4 20

351 1 10

191 7 45

maxd maxp
1 33
4 20
7 45

JOIN

https://www.figma.com/blog/post-mortem-service-
disruption-on-january-21-22-2020/

51

https://www.figma.com/blog/post-mortem-service-disruption-on-january-21-22-2020/
https://www.figma.com/blog/post-mortem-service-disruption-on-january-21-22-2020/

