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– Power/cooling 
– Networking 
– AI datacenters

▪ Single table SQL 
– Relational model 
– Schemas 
– Data types 
– Limits 
– Basic queries

▪ Schema evolution 
– API schema 
– Case studies [1, 2]

3

https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/


Row/Cluster

● 30+ racks



Network Topology

5



Network Topology

5



Networking - Switch locations



Networking - Switch locations

● Top-of-rack switch  
○ Connecting machines in rack 
○ Multiple links going to end-of-row routers 



Networking - Switch locations

● Top-of-rack switch  
○ Connecting machines in rack 
○ Multiple links going to end-of-row routers 



Networking - Switch locations

● Top-of-rack switch  
○ Connecting machines in rack 
○ Multiple links going to end-of-row routers 

● End-of-row router 
○ Aggregate row of machines  
○ Multiple links going to core routers



Networking - Switch locations

● Top-of-rack switch  
○ Connecting machines in rack 
○ Multiple links going to end-of-row routers 

● End-of-row router 
○ Aggregate row of machines  
○ Multiple links going to core routers



Networking - Switch locations

● Top-of-rack switch  
○ Connecting machines in rack 
○ Multiple links going to end-of-row routers 

● End-of-row router 
○ Aggregate row of machines  
○ Multiple links going to core routers

● Core router 
○ Multiple core routers  



Networking - Switch locations

● Top-of-rack switch  
○ Connecting machines in rack 
○ Multiple links going to end-of-row routers 

● End-of-row router 
○ Aggregate row of machines  
○ Multiple links going to core routers

● Core router 
○ Multiple core routers  

● Each of these have different latencies, throughput 
○ Higher in hierarchy -> higher throughput
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● Early data centers built with off-the-shelf components 
○ Standard servers 
○ HVAC unit designs from malls

PUE ratio =     Total Facility Power  
                     Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0

● Average PUE for AWS datacenters in 2024: 1.15 (only 15% from optimal!)

● Some can be 1.04

● Power is about 25% of monthly operating cost
○ And is (one of) the limiting factor in how large the datacenter can be
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Energy Efficient Data Centers

● Better power distribution - Fewer transformers 

● Better cooling - use environment (air/water) rather than air conditioning
○ Bring in outside air 
○ Evaporate some water

● IT Equipment range
○ OK up to +115℉
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Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy
○ Multiple independent copies of all data
○ Independent? Consistency :(

○ Multiple independent network connections
○ Under utilized capacity

○ Multiple copies of every service
○ Releases, update cycles, resource use
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○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

● Differences

○ Compute: Thousands of GPUs, small ratio of CPU/GPU

○ Memory: Don’t need as much traditional CPU memory, require lots of on-GPU High 
Bandwidth Memory (HBM), which is much more expensive

○ Network: AI training has much more demanding networking requirements. Requires 
dedicated high-bandwidth networking both within a server (e.g., NVIDIA’s NVLINK) 
and across servers (e.g., Infiniband)

● We will cover these topics more deeply in the second half of the class
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Where should you build your datacenter?

● Plentiful, inexpensive electricity   
○ Examples - Oregon: Hydroelectric;   Iowa: Wind 
○ Increasingly: nuclear, thermal

● Good network connections  
○ Access to the Internet backbone

● Inexpensive land

● Geographically near users  
○ Speed of light latency  
○ Country laws (e.g. Our citizen's data must be kept in our county.)

● Available labor pool

● Politics 
○ Crime and corruption 

○ Tax breaks 

○ AI regulations



Google Data Center - Council Bluffs, Iowa, USA

Source: semianalysis
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Datacenter “megasites”

19
Source: semianalysis

● Four Google datacenter sites within a 50-mile radius of each other, in the 
Iowa/Nebraska region 

● May reach GW of total power consumption
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General application guidance

● A “responsible” data center tenant 

○ Organizes jobs and tasks into tiers

○ Localizes and colocates

○ Minimizes bandwidth usage

○ Uses the right models (pubsub, RPCs, batch workflows)

○ Respects quotas

○ Provides telemetry for observation and adjustment
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Summary

● It’s easy as data scientists (or software engineers) to lose sight that 
our code actually runs somewhere physically

● The cloud is not some abstract concept: these are huge physical sites 
consuming power equivalent to entire cities

● AI is accelerating the construction of new data centers

● Datacenter sustainability (especially in the age of AI) is going to be 
extremely important in the coming years

21



Computer Systems for Data Science 
Topic 2

Relational Model and SQL

Borrowed from Shiva Shivakumar and Theodoros Rekatsinas



What we’ll cover in this topic

▪ Intuition 
– Basic relational model 
– Map-filter-reduce concept 

▪ Intro to SQL 
– Schemas, query structure of SELECT-FROM-WHERE, JOINs

23
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Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room: 
string)
Enrolled(cuid: string, cid: string, grade: 
string)

Queries [“compute” over tables] 
Alice’s GPA?
Jay’s classes?
AVG student GPA? 
AVG student GPA in CSEE 4121?

26
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Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

▪ Definition: Schema
– Describes blueprint of table(s)

▪ Every relation has a schema
– Logical Schema: describes types, names
– Physical Schema: describes data layout
– Virtual Schema (Views): derived tables 
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Data Independence

1. Can we add a new column or attribute without 
rewriting the application?

– Logical Data Independence
• Protection from changes in the logical structure of the data

2. Do you need to care which disks/machines are the 
data stored on?

– Physical Data Independence
• Protection from Physical Layout Changes

28
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Python Operating on Lists

29

Basic types 
• Int 
• Long 
• String

Map + Filter 
•  map(function, list) 
•  filter(function, list) 

Map applies function 
to input list 
Filter returns sub list 
that satisfies filter 
condition

Reduce/Aggregate 
•  reduce(…) 

Reduce runs a 
computation on a list 
and returns a result 
E.g., SUM, AVG, MAX



SQL Queries on Tables (Lists of Rows)

30



SQL Queries on Tables (Lists of Rows)

30

Basic types 
• Int32, Int64 
• Char[n] 
• Float32, Float64



SQL Queries on Tables (Lists of Rows)

30

Basic types 
• Int32, Int64 
• Char[n] 
• Float32, Float64

Map + Filter 
Single Table Query 

SELECT c1, c2 
FROM    T 
WHERE condition; 



SQL Queries on Tables (Lists of Rows)

30

Basic types 
• Int32, Int64 
• Char[n] 
• Float32, Float64

Map + Filter 
Single Table Query 

SELECT c1, c2 
FROM    T 
WHERE condition; 

Multi Table JOIN 

SELECT c1, c2 
FROM    T1, T2 
WHERE condition; 



SQL Queries on Tables (Lists of Rows)

30

Basic types 
• Int32, Int64 
• Char[n] 
• Float32, Float64

Map + Filter 
Single Table Query 

SELECT c1, c2 
FROM    T 
WHERE condition; 

Reduce/Aggregate 

SELECT SUM(c1*c2) 
FROM    T 
WHERE condition 
GROUP BY c3;

Multi Table JOIN 

SELECT c1, c2 
FROM    T1, T2 
WHERE condition; 



SQL Queries on Tables (Lists of Rows)
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Basic types 
• Int32, Int64 
• Char[n] 
• Float32, Float64

Map + Filter 
Single Table Query 

SELECT c1, c2 
FROM    T 
WHERE condition; 

Reduce/Aggregate 

SELECT SUM(c1*c2) 
FROM    T 
WHERE condition 
GROUP BY c3;

Multi Table JOIN 

SELECT c1, c2 
FROM    T1, T2 
WHERE condition; 

Map-Filter-Reduce pattern: Same simple/powerful idea in 
MapReduce, Hadoop, Spark, etc. 
 



SQL Cheat Sheet (www.sqltutorial.org/sql-cheat-sheet)
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Key-Value — The simplest model: every piece of data is stored as a key mapped to a value (which can 
be anything—string, JSON, binary blob). No schema, no relationships. Examples: Redis, DynamoDB, 
etcd. Great for caching, session storage, and simple lookups where you always know the key. 

Document — Stores semi-structured documents (typically JSON or BSON) that can have nested fields 
and varying structures. Unlike relational tables, each document can have different fields. Examples: 
MongoDB, CouchDB, Firestore. Good for content management, user profiles, and applications where 
schema flexibility matters. 

Wide-Column / Column-Family — Data is organized by columns rather than rows, with rows that can 
have different columns. Optimized for queries over large datasets where you typically read specific 
columns across many rows. Examples: Cassandra, HBase, Google Bigtable. Common for time-series 
data, analytics, and write-heavy workloads. 

Graph — Models data as nodes (entities) and edges (relationships), with properties on both. Traversing 
relationships is a first-class operation rather than an expensive join. Examples: Neo4j, Amazon Neptune, 
TigerGraph. Ideal for social networks, fraud detection, and recommendation engines. 

Time-Series — Optimized specifically for timestamped data points, with efficient compression and time-
based queries. Examples: InfluxDB, TimescaleDB, Prometheus. Used for metrics, IoT sensor data, and 
monitoring. 

Vector — Stores high-dimensional embeddings and supports similarity search (nearest neighbor queries). 
Examples: Pinecone, Milvus, pgvector. Essential for AI applications like semantic search and RAG 
systems. 
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SQL Introduction

● SQL is a standard language for querying 
and manipulating data 

● SQL is a very high-level programming 
language 

● This works because it is optimized well!

34

SQL stands for 
Structured  
Query  
Language



SQL is a…

● Data Manipulation Language (DML) 
       Query one or more tables  

       	 	 Insert/delete/modify tuples in tables 

● Data Definition Language (DDL) 
      	 Define relational schemata 
        	 Create/alter/delete tables and their attributes

35
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▪ Multiset: {2, 1, 3, 1}	 Unordered, duplicates

▪ Unions: 
– Set: {2, 1, 3} U {2, 3} = {2, 1, 3} 
– Multiset: {2, 1, 3} U {2, 3} = {2, 1, 3, 2, 3}

▪ Cross-product: 
– {1, 1, 2, 3} * {y, z} = {1, y}, {1, y}, {2, y}, {3, y}, {1, z}, {1, z}, {2, z}, {3, z}
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specified by the 
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PName Price Manuf
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Tables in SQL
Product

PName Price Manuf

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

The number of tuples 
is the cardinality of 
the relation

The number of attributes is the arity 
of the relation



Data Types in SQL
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Atomic types: 
     Characters: CHAR(20), VARCHAR(50) 
       Numbers: INT, BIGINT, SMALLINT, FLOAT 
       Others: MONEY, DATETIME… 

Every attribute must have an atomic type 
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Key constraints
A key is a minimal subset of attributes that acts as a 
unique identifier for tuples in a relation

● A key is an implicit constraint on which 
tuples can be in the relation 

● i.e. if two tuples agree on the values of the 
key, then they must be the same tuple! 

Students(cuid:string, name:string, gpa: float) 

1. Which would you select as a key?
2. Is a key always guaranteed to exist?



Declaring Schema

Students(cuid: string, name: string, gpa: float) 

CREATE TABLE Students ( 
  cuid CHAR(20), 
  name  VARCHAR(50), 
  gpa  float, 
  PRIMARY KEY (cuid), 
)
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NULL and NOT NULL
● To say “does not have value,” we use NULL 
         

Students(cuid:string, name:string, gpa: float) 



NULL and NOT NULL

cuid name gpa

123 Alice 3.9

143 Jim NULL

Say, Jim just enrolled in his first class.

● To say “does not have value,” we use NULL 
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NULL and NOT NULL

cuid name gpa

123 Alice 3.9

143 Jim NULL

Say, Jim just enrolled in his first class.

● To say “does not have value,” we use NULL 
         

Students(cuid:string, name:string, gpa: float) 

In SQL, we may constrain a column to be NOT NULL,  
e.g., “name” in this table 

https://www.youtube.com/watch?v=ybrQvs4x0Ps
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General Constraints

● We can actually specify arbitrary assertions 
        E.g. “There cannot be 25 people in the DB class” 

● In practice, we don’t specify many such 
constraints. Why? 

        Performance!

Usually we do something ugly (or avoid doing something 
convenient) for the sake of performance 



Summary of Schema Information

● Schema and Constraints are how databases understand the 
semantics (meaning) of data 

● SQL supports general constraints: 
       	 Keys are most important 
        



API Schema

48

● Translation layer between external 
clients and internal database schema 

● Same logical entity might be 
represented differently 

● (e.g., database splits User across 
multiple tables, but API returns a 
single unified User object) 

● API can hide sensitive database 
details or expose computed/
aggregated data not directly stored 

● Database schema can change 
without breaking the API if the 
translation layer is updated 
accordingly



API Schema

48

● Defines the structure of data in transit 

● request/response formats, endpoints, 
parameters 

● Optimized for usability, clarity, and client 
needs 

● External contract - publicly exposed 
interface that clients depend on 

● Uses language-agnostic formats 

● (JSON, XML, Protocol Buffers) with 
type systems 

● Changes must maintain backward 
compatibility or use versioning

● Translation layer between external 
clients and internal database schema 

● Same logical entity might be 
represented differently 

● (e.g., database splits User across 
multiple tables, but API returns a 
single unified User object) 

● API can hide sensitive database 
details or expose computed/
aggregated data not directly stored 

● Database schema can change 
without breaking the API if the 
translation layer is updated 
accordingly



Protocol Buffers

▪ API Schema definition language 

▪ Provides libraries for convenience  

▪ Comparable to JSON and XML 

▪ But better! 

▪  Binary on the wire
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edition = "2023"; 

package tutorial; 

message Person { 
  string name = 1; 
  int32 id = 2; 
  string email = 3; 

  enum PhoneType { 
    PHONE_TYPE_UNSPECIFIED = 0; 
    PHONE_TYPE_MOBILE = 1; 
    PHONE_TYPE_HOME = 2; 
    PHONE_TYPE_WORK = 3; 
  } 

  message PhoneNumber { 
    string number = 1; 
    PhoneType type = 2; 
  } 

  repeated PhoneNumber phones = 4; 
} 

message AddressBook { 
  repeated Person people = 1; 
} 



https://www.uber.com/blog/schemaless-sql-database/

▪ Flexible schema, not no schema! 

▪ Centralizing the complexity of consistency 

▪ Operational reality may not be “beautiful”

https://www.uber.com/blog/schemaless-sql-database/


https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

▪ Not request/response but streaming 

▪ From REST-like to RPC-like 

▪ Transport is as important as anything else 

▪ Don’t reinvent the wheel

https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

