Lecture 2

Lecture 1. summary

Class is about computer systems for data science

Class is about computer systems for data science
Very little math or algorithms

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs
Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs
Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)
Amdahl’'s law:

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs

Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)
Amdahl’s law:

ExTime,,, 1
Speedup(E) = =

ExTime,,, (1 — p) + %

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs

Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)
Amdahl’s law:
ExTime,,, 1
Speedup(E) = T — -
XL IMEy ey (1 — p) 1+ K3

fraction o f time not enhanced

Speedup bounded by:

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs
Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)

Amdahl’'s law:
ExTime,,, 1
Speedup(E) = - = >
ExTime,,, (1 — p> + <
1

fraction o f time not enhanced
Time scales in computer systems can vary by millions

Speedup bounded by:

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs
Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)

Amdahl’s law:

ExTime,,, 1
Speedup(E) = : =

ExTime,,, (1 — p> + %
Speedup bounded by: :

fraction o f time not enhanced

Time scales in computer systems can vary by millions
CPUs and memory operate in nanoseconds

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs
Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)

Amdahl’s law:

ExTime,,, 1
Speedup(E) = - =

ExTime,,, (1 — p> + %
Speedup bounded by: :

fraction o f time not enhanced

Time scales in computer systems can vary by millions
CPUs and memory operate in nanoseconds
Datacenter networks and SSDs operates in microseconds

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs
Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)

Amdahl’'s law:
ExTime,,, 1
Speedup(E) = - = >
ExTime,,, (1 — p> + <
1

fraction o f time not enhanced

Time scales in computer systems can vary by millions
CPUs and memory operate in nanoseconds
Datacenter networks and SSDs operates in microseconds
Sending stuff over the Internet operates in milliseconds

Speedup bounded by:

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs
Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)

Amdahl’'s law:
ExTime,,, 1
Speedup(E) = - = >
ExTime,,, (1 — p> + <
1

fraction o f time not enhanced

Time scales in computer systems can vary by millions
CPUs and memory operate in nanoseconds
Datacenter networks and SSDs operates in microseconds
Sending stuff over the Internet operates in milliseconds

Speedup bounded by:

Intro to datacenters

Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs
Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)

Amdahl’s law:

ExTime,,, 1
Speedup(E) = - = >
ExTime,,, (1 — p> + <

Speedup bounded by: :

fraction o f time not enhanced

Time scales in computer systems can vary by millions
CPUs and memory operate in nanoseconds
Datacenter networks and SSDs operates in microseconds
Sending stuff over the Internet operates in milliseconds

Intro to datacenters
Modern datacenter design: standard hardware, replicated in racks (cabinets), rows,
deployed in football stadium-sized warehouses

Lecture 2: What are we covering today?

Lecture 2: What are we covering today?

= Wrapping up data centers
— Power/cooling
— Networking
— Al datacenters

https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

Wrapping up data centers
Power/cooling
Networking
Al datacenters

Single table SQL

Relational model
Schemas

Data types
Limits

Basic queries

https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

Wrapping up data centers
Power/cooling
Networking
Al datacenters

Single table SQL

Relational model

Schemas

Data types

Limits

Basic queries
Schema evolution

APl schema
Case studies [1, 2]

https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

Row/Cluster

o 30+ racks

T T

\J
o

"‘
4
g
b
-
*
.
'
.
1
‘.
4
T
*

Network Topology

? 99 Q
[T

Networking - Switch locations

Networking - Switch locations

e Top-of-rack switch
o Connecting machines in rack
o Multiple links going to end-of-row routers

Networking - Switch locations

e Top-of-rack switch
o Connecting machines in rack
o Multiple links going to end-of-row routers

Top-of-rack switch
Connecting machines in rack
Multiple links going to end-of-row routers

End-of-row router
Aggregate row of machines
Multiple links going to core routers

Top-of-rack switch
Connecting machines in rack
Multiple links going to end-of-row routers

End-of-row router
Aggregate row of machines
Multiple links going to core routers

Top-of-rack switch
Connecting machines in rack
Multiple links going to end-of-row routers

End-of-row router
Aggregate row of machines
Multiple links going to core routers

Core router
Multiple core routers

Top-of-rack switch
Connecting machines in rack
Multiple links going to end-of-row routers

End-of-row router
Aggregate row of machines
Multiple links going to core routers

Core router
Multiple core routers

Each of these have different latencies, throughput
Higher in hierarchy -> higher throughput

Multipath routing

Multipath routing

/’—\/’_—‘\’_,_
— -

E e 3 Many paths between servers

- -f
—
"~

————————————————————————————— " ——————— ———

Core Layer

/
1’ "
r :/ ‘\
— . o oy / e
.,,‘,-/- ®/ \\\\‘ -_\‘ -~
/ \ f \ ; \ f \
_______ ,'________________4__$____________}___\\ S ——— /___\;.____________________________
\
\
\
\

Access Layer

equal performance paths

Early data centers built with off-the-shelf components
Standard servers
HVAC unit designs from malls

PUE ratio = Total Facility Power
Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0

Early data centers built with off-the-shelf components
Standard servers
HVAC unit designs from malls

PUE ratio = Total Facility Power
Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0
Average PUE for AWS datacenters in 2024: 1.15 (only 15% from optimal!)

Early data centers built with off-the-shelf components
Standard servers
HVAC unit designs from malls

PUE ratio = Total Facility Power
Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0
Average PUE for AWS datacenters in 2024: 1.15 (only 15% from optimal!)

Some can be 1.04

Power is about 25% of monthly operating cost

And is (one of) the limiting factor in how large the datacenter can be

Energy Efficient Data Centers

o Better power distribution - Fewer transformers

Energy Efficient Data Centers

o Better power distribution - Fewer transformers

o Better cooling - use environment (air/water) rather than air conditioning
o Bring in outside air
o Evaporate some water

Energy Efficient Data Centers

o Better power distribution - Fewer transformers

o Better cooling - use environment (air/water) rather than air conditioning
o Bring in outside air
o Evaporate some water

e [T Equipment range
o OKupto +115°F

Liquid immersion is the “hottest” new technology for
cooling data centers

J

WHAT IS 11?7 |

§ '.‘ ‘.— . - —
,‘,' | ‘." .
4..‘ 5
J

NGO SEcunns 3

| ~» "\t:r

10

https://www.youtube.com/watch?v=U6LQeFmY-IU

Liquid immersion is the “hottest” new technology for
cooling data centers

J

WHAT IS 11?7 |

§ '.‘ ‘.— . - —
,‘,' | ‘." .
4..‘ 5
J

NGO SEcunns 3

| ~» "\t:r

10

https://www.youtube.com/watch?v=U6LQeFmY-IU

Liquid immersion is the “hottest” new technology for
cooling data centers

J

WHAT IS 11?7 |

§ '.‘ ‘.— . - —
,‘,' | ‘." .
4..‘ 5
J

NGO SEcunns 3

| ~» "\t:r

10

https://www.youtube.com/watch?v=U6LQeFmY-IU

Backup Power

Massive amount of batteries to tolerate short glitches in power

Massive amount of batteries to tolerate short glitches in power
Just need long enough for backup generators to startup

Massive amount of batteries to tolerate short glitches in power
Just need long enough for backup generators to startup

How do glitches occur?

Massive amount of batteries to tolerate short glitches in power
Just need long enough for backup generators to startup

How do glitches occur?

Thunder, earthquake, power loss from power company, cyber attack, ...

Massive amount of batteries to tolerate short glitches in power
Just need long enough for backup generators to startup

How do glitches occur?

Thunder, earthquake, power loss from power company, cyber attack, ...

Massive collections of backup generators

Massive amount of batteries to tolerate short glitches in power
Just need long enough for backup generators to startup

How do glitches occur?

Thunder, earthquake, power loss from power company, cyber attack, ...
Massive collections of backup generators

Huge fuel tanks to provide fuel for the generators

Massive amount of batteries to tolerate short glitches in power
Just need long enough for backup generators to startup

How do glitches occur?

Thunder, earthquake, power loss from power company, cyber attack, ...
Massive collections of backup generators
Huge fuel tanks to provide fuel for the generators

Fuel replenishment transportation network (e.g. fuel trucks)

Backup Power

e Massive amount of batteries to tolerate short glitches in power
o Just need long enough for backup generators to startup

e How do glitches occur?

O Thunder, earthquake, pOWer | — édNN] World Africa Americas Asia A:Jstralia .(;hina | Europe More v e Watch m Sign in
o Massive collections of backl BREGRLLELEE

New details in fatal shooting of Alex Pretti. Rep. Ilhan Omar attacked during town hall. Social media platforms on trial

e Huge fuel tanks to provide f

WORLD ASIA - 2 MIN READ

Explosive battery blaze in South Korea ‘paralyzes’
vital government services

SEP 27,2025 v

e Fuel replenishment transpol

By Laura Sharman

Energy sources

12

Increasingly, data centers powered by renewable energy

12

Increasingly, data centers powered by renewable energy

But, solar/wind are intermittent

12

Increasingly, data centers powered by renewable energy
But, solar/wind are intermittent

Hydro, nuclear are more reliable

12

Increasingly, data centers powered by renewable energy
But, solar/wind are intermittent

Hydro, nuclear are more reliable

12

Increasingly, data centers powered by renewable energy
But, solar/wind are intermittent

Hydro, nuclear are more reliable

In practice, many new data centers powered by solar / wind but rely on fossil
fuels from the electric grid when the wind isn’t blowing / sun isn’t shining

12

Energy sources

e Increasingly, data centers powered by renewable energy
o But, solar/wind are intermittent

o Hydro, nuclear are more reliable

e In practice, many new data centers powered by solar / wind but rely on fossil
fuels from the electric grid when the wind isn’t blowing / sun isn’t shining

12

Fault Tolerance

At the scale of new data centers, things are breaking constantly

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures

Solution: Redundancy

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures

Solution: Redundancy
Multiple independent copies of all data

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures

Solution: Redundancy
Multiple independent copies of all data
Independent? Consistency :(

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures

Solution: Redundancy
Multiple independent copies of all data
Independent? Consistency :(

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures
Solution: Redundancy
Multiple independent copies of all data
Independent? Consistency :(

Multiple independent network connections

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures

Solution: Redundancy
Multiple independent copies of all data
Independent? Consistency :(

Multiple independent network connections
Under utilized capacity

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures

Solution: Redundancy
Multiple independent copies of all data
Independent? Consistency :(

Multiple independent network connections
Under utilized capacity

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures
Solution: Redundancy
Multiple independent copies of all data
Independent? Consistency :(

Multiple independent network connections
Under utilized capacity

Multiple copies of every service

At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures

Solution: Redundancy
Multiple independent copies of all data
Independent? Consistency :(

Multiple independent network connections
Under utilized capacity

Multiple copies of every service
Releases, update cycles, resource use

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures

~1000 individual machine failures

~dozens of minor 30-second blips for DNS
It's always DNS (unless it's BGP)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures

~1000 individual machine failures

~dozens of minor 30-second blips for DNS
It's always DNS (unless it's BGP)

~3 router failures (have to immediately pull traffic for an hour)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS
It's always DNS (unless it's BGP)
~3 router failures (have to immediately pull traffic for an hour)

~12 router reloads (takes out DNS and external VIPs for a couple minutes)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS
It's always DNS (unless it's BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (might cause ~30-minute random connectivity losses)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures

~1000 individual machine failures

~dozens of minor 30-second blips for DNS

It's always DNS (unless

it's BGP)

~3 router failures (have to immediately pull traffic for an hour)

~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (mig

~5 racks go wonky (40-80 mac

Nt cause ~30-minute random connectivity losses)

nines see 50% packet loss)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS
It's always DNS (unless it's BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (might cause ~30-minute random connectivity losses)

~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS
It's always DNS (unless it's BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (might cause ~30-minute random connectivity losses)

~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~1 network rewiring (rolling ~5% of machines down over 2-day span)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS
It's always DNS (unless it's BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (might cause ~30-minute random connectivity losses)

~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

~thousands of hard drive failures

~1000 individual machine failures

~dozens of minor 30-second blips for DNS

It's always DNS (unless

it's BGP)

~3 router failures (have to immediately pull traffic for an hour)

~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (mig

~5 racks go wonky (40-80 mac

Nt cause ~30-minute random connectivity losses)

nines see 50% packet loss)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~1 network rewiring (rolling ~5% of machines down over 2-day span)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)

~0.5 overheating (power down

most machines in <5 mins, ~1-2 days to recover)

~thousands of hard drive failures

~1000 individual machine failures

~dozens of minor 30-second blips for DNS

It's always DNS (unless

it's BGP)

~3 router failures (have to immediately pull traffic for an hour)

~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (mig

~5 racks go wonky (40-80 mac

Nt cause ~30-minute random connectivity losses)

nines see 50% packet loss)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~1 network rewiring (rolling ~5% of machines down over 2-day span)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)

~0.5 overheating (power down

most machines in <5 mins, ~1-2 days to recover)

~thousands of hard drive failures

~1000 individual machine failures

~dozens of minor 30-second blips for DNS

It's always DNS (unless

it's BGP)

~3 router failures (have to immediately pull traffic for an hour)

~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (mig

~5 racks go wonky (40-80 mac

Nt cause ~30-minute random connectivity losses)

nines see 50% packet loss)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~1 network rewiring (rolling ~5% of machines down over 2-day span)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)

~0.5 overheating (power down

most machines in <5 mins, ~1-2 days to recover)

- Reliability must come from software!

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips fo
It's always DNS (unless it's B
~3 router failures (have to immediate
~12 router reloads (takes out DNS a

~8 network maintenances (might cau

~5 racks go wonky (40-80 machines
~20 rack failures (40-80 machines ir
~1 network rewiring (rolling ~5% of r
~1 rack-move (plenty of warning, ~5

~1 PDU failure (~500-1000 machine
~0.5 overheating (power down most

- Reliability must come fror

Cloudflare 1.1.1.1 incident on July
14,2025

2025-07-15

Ash Pallarito Q Joe Abley

8 min read

On 14 July 2025, Cloudflare made a change to our service topologies that caused an
outage for 1.1.1.1 on the edge, resulting in downtime for 62 minutes for customers using
the 1.1.1.1 public DNS Resolver as well as intermittent degradation of service for
Gateway DNS.

Failures in first year for a new data center (Jeff Dean)

Cloudflare 1.1.1.1 incident on July

~thousands of hard drive failures 14 2025
~1000 individual machine failures 2025-07-15
~dozens of minor 30-second blips fo | i
Ash Pallarito | Joe Abley
It's always DNS (unless it's B
8 min read

~3 router failures (have to immediate
~12 router reloads (takes out DNS a (| | o

~8 network maintenances (migh cloudflare has apologised after an outage on Friday morning hit websites
~5 racks go wonky (40-80 mach including LinkedIn, Zoom and Downdetector, the company’s second outage

~20 rack failures (40-80 machin in less than a month.

SRRRR |11 . IR B
~1 network rewiring (rolling ~5% of r | ‘ u ‘ ‘ ‘l |“|
|
~1 rack-move (plenty of warning, ~5

| I |
~1 PDU failure (~500-1000 machine | I | ‘ ‘ |
~0.5 overheating (power down most

On 14 July 2025, Cloudflare made a change to our service topologies that caused an
outage for 1.1.1.1 on the edge, resulting in downtime for 62 minutes for customers using

9 Rel |ab| | |ty m USt come fror the 1.1.1.1 public DNS Resolver as well as intermittent degradation of service for
Gateway DNS.

Comparing Al datacenters to traditional ones

15

Comparing Al datacenters to traditional ones

e Similarities

15

Comparing Al datacenters to traditional ones

e Similarities

o Same rack/row topology

15

Comparing Al datacenters to traditional ones

e Similarities
o Same rack/row topology

o Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

15

Comparing Al datacenters to traditional ones

e Similarities
o Same rack/row topology

o Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

15

Comparing Al datacenters to traditional ones

e Similarities
o Same rack/row topology

o Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

e Differences

15

Similarities
Same rack/row topology

Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

Differences

Compute: Thousands of GPUs, small ratio of CPU/GPU

15

Similarities
Same rack/row topology

Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

Differences
Compute: Thousands of GPUs, small ratio of CPU/GPU

Memory: Don’'t need as much traditional CPU memory, require lots of on-GPU High
Bandwidth Memory (HBM), which is much more expensive

15

Similarities
Same rack/row topology

Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

Differences
Compute: Thousands of GPUs, small ratio of CPU/GPU

Memory: Don’'t need as much traditional CPU memory, require lots of on-GPU High
Bandwidth Memory (HBM), which is much more expensive

Network: Al training has much more demanding networking requirements. Requires
dedicated high-bandwidth networking both within a server (e.g., NVIDIA's NVLINK)
and across servers (e.g., Infiniband)

15

Similarities
Same rack/row topology

Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

Differences
Compute: Thousands of GPUs, small ratio of CPU/GPU

Memory: Don’'t need as much traditional CPU memory, require lots of on-GPU High
Bandwidth Memory (HBM), which is much more expensive

Network: Al training has much more demanding networking requirements. Requires
dedicated high-bandwidth networking both within a server (e.g., NVIDIA's NVLINK)
and across servers (e.g., Infiniband)

15

Similarities
Same rack/row topology

Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

Differences
Compute: Thousands of GPUs, small ratio of CPU/GPU

Memory: Don’'t need as much traditional CPU memory, require lots of on-GPU High
Bandwidth Memory (HBM), which is much more expensive

Network: Al training has much more demanding networking requirements. Requires
dedicated high-bandwidth networking both within a server (e.g., NVIDIA's NVLINK)
and across servers (e.g., Infiniband)

We will cover these topics more deeply in the second half of the class

15

Where should you build your datacenter?

Where should you build your datacenter?

e Plentiful, inexpensive electricity
o Examples - Oregon: Hydroelectric, lowa: Wind
o Increasingly: nuclear, thermal

Plentiful, inexpensive electricity
Examples - Oregon: Hydroelectric; lowa: Wind
Increasingly: nuclear, thermal

Good network connections
Access to the Internet backbone

Plentiful, inexpensive electricity
Examples - Oregon: Hydroelectric; lowa: Wind
Increasingly: nuclear, thermal

Good network connections
Access to the Internet backbone

Inexpensive land

Plentiful, inexpensive electricity
Examples - Oregon: Hydroelectric; lowa: Wind
Increasingly: nuclear, thermal

Good network connections
Access to the Internet backbone

Inexpensive land

Geographically near users
Speed of light latency
Country laws (e.g. Our citizen's data must be kept in our county.)

Plentiful, inexpensive electricity
Examples - Oregon: Hydroelectric; lowa: Wind
Increasingly: nuclear, thermal

Good network connections
Access to the Internet backbone

Inexpensive land

Geographically near users

Speed of light latency
Country laws (e.g. Our citizen's data must be kept in our county.)

Available labor pool

Plentiful, inexpensive electricity
Examples - Oregon: Hydroelectric; lowa: Wind
Increasingly: nuclear, thermal

Good network connections
Access to the Internet backbone

Inexpensive land

Geographically near users

Speed of light latency
Country laws (e.g. Our citizen's data must be kept in our county.)

Available labor pool

Politics
Crime and corruption
Tax breaks

Al regulations

Google Data Center - Council Bluffs, lowa, USA

L Iaaeaet{= I as s iatl *5 Ih-n-,vi] - |
!

s
iy ()

e s —— el Moy Al ity
{ i A KA
‘mmmmn:,’ x

2 ROUAEY AL
_.J‘

—<F
.

lllllll.]"

)

nEHEE EEm] ‘vEuE sEme TEaw add.l
§SEE W GEEE CUU- e Tegil-—

e .-‘uiu ?_?

13

u}rl

B < | T - A N & TEES” - \‘M_\m(
d gl] $00 b £ =D . 5 _

» —_— B R
X TSI i

= e S L W ot ' : " 5 ' : -
@ e e @i prreea em BE] a0 imEes 3 Yo R L . " ‘
B o e e Vo BRI R TR e L Y 4 e :) f '

- r n

o Wi
LR UL

v v v memn -

. u,:"m::- R'a

Source: semianalysis

Google data center pictures: Council Bluffs

Datacenter "megasites”

o Four Google datacenter sites within a 50-mile radius of each other, in the
lowa/Nebraska region
o May reach GW of total power consumption

Source: semianalysis

19

General application guidance

General application guidance

e A‘responsible” data center tenant

General application guidance

e A‘responsible” data center tenant

o Qrganizes jobs and tasks into tiers

e A‘responsible” data center tenant
o Qrganizes jobs and tasks into tiers

o Localizes and colocates

e A‘responsible” data center tenant
o Qrganizes jobs and tasks into tiers
o Localizes and colocates

o Minimizes bandwidth usage

e A‘responsible” data center tenant
o Qrganizes jobs and tasks into tiers
o Localizes and colocates
o Minimizes bandwidth usage

o Uses the right models (pubsub, RPCs, batch workflows)

e A‘responsible” data center tenant
o Qrganizes jobs and tasks into tiers
o Localizes and colocates
o Minimizes bandwidth usage
o Uses the right models (pubsub, RPCs, batch workflows)

o Respects quotas

e A‘responsible” data center tenant
o Qrganizes jobs and tasks into tiers
o Localizes and colocates
o Minimizes bandwidth usage
o Uses the right models (pubsub, RPCs, batch workflows)
o Respects quotas

o Provides telemetry for observation and adjustment

Summary

21

It's easy as data scientists (or software engineers) to lose sight that
our code actually runs somewhere physically

21

It's easy as data scientists (or software engineers) to lose sight that
our code actually runs somewhere physically

The cloud is not some abstract concept: these are huge physical sites
consuming power equivalent to entire cities

21

It's easy as data scientists (or software engineers) to lose sight that
our code actually runs somewhere physically

The cloud is not some abstract concept: these are huge physical sites
consuming power equivalent to entire cities

Al is accelerating the construction of new data centers

21

It's easy as data scientists (or software engineers) to lose sight that
our code actually runs somewhere physically

The cloud is not some abstract concept: these are huge physical sites
consuming power equivalent to entire cities

Al is accelerating the construction of new data centers

Datacenter sustainability (especially in the age of Al) is going to be
extremely important in the coming years

21

Borrowed from Shiva Shivakumar and Theodoros Rekatsinas

Computer Systems for Data Science
Topic 2

Relational Model and SQL

23

Intuition
Basic relational model
Map-filter-reduce concept

Intro to SQL
Schemas, query structure of SELECT-FROM-WHERE, JOINs

Relational Model: Intuition

A Motivating Example

A basic Course Management System (CMS):

Entities or Relation (e.g., Students, Courses)

Relationships (e.g., Alice is enrolled in CSEE
4121)

25

A Motivating Example

A basic Course Management System (CMS):

Entities or Relation (e.g., Students, Courses)

Relationships (e.g., Alice is enrolled in CSEE
4121)

———

25

A Motivating Example

A basic Course Management System (CMS):

Entities or Relation (e.g., Students, Courses)

Relationships (e.g., Alice is enrolled in CSEE
4121)

Relationships

I—l—l l_'l_|

Students Courses Professors Who takes Who teaches
what what

25

Intuition: Spreadsheet Tables

26

Intuition: Spreadsheet Tables

26

Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
22
3.8

Enrolled

CuUID CID
as2121

89999

mc2312

zb1111

Grade
4121 A+
4121|C
3292 A+
2999 D

Intuition: Spreadsheet Tables

Logical Schema

Students Enrolled
CUID Name GPA CUID CID Grade
as2121 Alice Smith 4.3 as2121 4121 A+
89999 Jay Goodwin 1.2 89999 4121 C
mc2312 Min Chang 2.2 mc2312 3292 A+
zb1111 Zorn Bjorn 3.8 zb1111 2999 D
Courses
CID C-Name Room

4121 Computer Sy CEPSR

3292 Databases MUDD 1

2999 Algorithms MUDD 2

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)

Students Enrolled
CUID Name GPA CUID CID Grade
as2121 Alice Smith 4.3 as2121 4121 A+
j89999 Jay Goodwin 1.2 jg9999 4121 C
mc2312 Min Chang 2.2 mc2312 3292 A+
zb1111 Zorn Bjorn 3.8 zb1111 2999 D
Courses
CID C-Name Room

4121 Computer Sy CEPSR

3292 Databases MUDD 1

2999 Algorithms MUDD 2

26

Logical Schema
Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room:
string)

Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
945
3.8

Enrolled

CUID CID
as2121

j89999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D

26

Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

26

Students

CUID Name GPA

as2121 Alice Smith 4.3
jg9999 Jay Goodwin 1.2
mc2312 Min Chang 2.2
zb1111 Zorn Bjorn 3.8
Courses

CID C-Name Room

4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

Enrolled

CUID CID
as2121

j89999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D

Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

26

Students

CUID Name GPA

as2121 Alice Smith 4.3
jg9999 Jay Goodwin 1.2
mc2312 Min Chang 2.2
zb1111 Zorn Bjorn 3.8
Courses

CID C-Name Room

4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

Enrolled

CUID CID
as2121

j89999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D

Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

26

Students

CUID Name GPA

as2121 Alice Smith 4.3
jg9999 Jay Goodwin 1.2
mc2312 Min Chang 2.2
zb1111 Zorn Bjorn 3.8
Courses

CID C-Name Room

4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

Enrolled

CUID CID
as2121

j89999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D

Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

Queries [“compute” over tables]

26

Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
945
3.8

Enrolled

CUID CID
as2121

j89999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D

Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

Queries [“compute” over tables]
Alice’s GPA?

26

Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
945
3.8

Enrolled

CUID CID
as2121

j89999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D

Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

Queries [“compute” over tables]
Alice’s GPA?
Jay’s classes?

26

Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
945
3.8

Enrolled

CUID CID
as2121

jg9999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D

Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

Queries [“compute” over tables]
Alice’s GPA?

Jay’s classes?

AVG student GPA?

26

Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
945
3.8

Enrolled

CUID CID
as2121

jg9999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D

Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

Queries [“compute” over tables]
Alice’s GPA?

Jay’s classes?

AVG student GPA?

AVG student GPA in CSEE 41217

26

Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
945
3.8

Enrolled

CUID CID
as2121

j89999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D

Relational Model and Schemas

27

Relational Model and Schemas

= Definition: Data model

27

Relational Model and Schemas

= Definition: Data model
— Organizing principle of data + operations

27

27

Definition: Data model

Organizing principle of data + operations

Relational model (aka tables)

27

Definition: Data model

Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular

27

Definition: Data model

Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

27

Definition: Data model

Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

Definition: Data model
Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

Definition: Schema

Definition: Data model
Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

Definition: Schema
Describes blueprint of table(s)

Definition: Data model
Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

Definition: Schema
Describes blueprint of table(s)

27

Definition: Data model

Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

Definition: Schema

Describes blueprint of table(s)

Every relation has a schema

27

Definition: Data model

Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

Definition: Schema

Describes blueprint of table(s)

Every relation has a schema
Logical Schema: describes types, names

27

Definition: Data model

Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

Definition: Schema

Describes blueprint of table(s)

Every relation has a schema
Logical Schema: describes types, names
Physical Schema: describes data layout

27

Definition: Data model

Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

Definition: Schema

Describes blueprint of table(s)

Every relation has a schema
Logical Schema: describes types, names
Physical Schema: describes data layout
Virtual Schema (Views): derived tables

Data Independence

28

28

Can we add a new column or attribute without
rewriting the application?

28

Can we add a new column or attribute without
rewriting the application?

28

Can we add a new column or attribute without
rewriting the application?

Logical Data Independence

28

Can we add a new column or attribute without
rewriting the application?

Logical Data Independence
Protection from changes in the logical structure of the data

28

Can we add a new column or attribute without
rewriting the application?

Logical Data Independence
Protection from changes in the logical structure of the data

28

Can we add a new column or attribute without
rewriting the application?

Logical Data Independence
Protection from changes in the logical structure of the data

Do you need to care which disks/machines are the
data stored on?

28

Can we add a new column or attribute without
rewriting the application?

Logical Data Independence
Protection from changes in the logical structure of the data

Do you need to care which disks/machines are the
data stored on?

28

Can we add a new column or attribute without
rewriting the application?

Logical Data Independence
Protection from changes in the logical structure of the data

Do you need to care which disks/machines are the
data stored on?

Physical Data Independence

28

Can we add a new column or attribute without
rewriting the application?

Logical Data Independence
Protection from changes in the logical structure of the data

Do you need to care which disks/machines are the
data stored on?

Physical Data Independence
Protection from Physical Layout Changes

Python Operating on Lists

29

Python Operating on Lists

Basic types
* |Int

Wolgle

String

29

Python Operating on Lists

Basic types Map + Filter

* Int . (function, list)
 Long . (function, list)
e String

Map applies function
to input list

Filter returns sub list
that satisfies filter
condition

29

Python Operating on Lists

29

Basic types

Int
Wolgle
String

Map + Filter
. (function, list)
. (function, list)

Map applies function
to input list

Filter returns sub list
that satisfies filter
condition

Reduce/Aggregate
. (-..)

Reduce runs a
computation on a list
and returns a result

E.g., SUM, AVG, MAX

SQL Queries on Tables (Lists of Rows)

30

SQL Queries on Tables (Lists of Rows)

Basic types
Int32, Int64
Char|[n]

Float32, Floatc4

30

SQL Queries on Tables (Lists of Rows)

30

Basic types

Int32, Int64
Char[n]
Float32, Float64

Map + Filter
Single Table Query

c1, c2
T
condition;

SQL Queries on Tables (Lists of Rows)

30

Basic types

Int32, Int64
Char[n]
Float32, Float64

Map + Filter
Single Table Query

c1, c2
T
condition;

Multi Table JOIN

c1, c2
T1, T2
condition;

SQL Queries on Tables (Lists of Rows)

Basic types Map + Filter Reduce/Aggregate

.+ Int32, Int64 Single Table Query
 Char|[n] SUM(c1*c2)

 Float32, Floatb4 c1, c2 T
T condition

condition; c3;

Multi Table JOIN

c1, c2
T1, T2
condition;

30

SQL Queries on Tables (Lists of Rows)

Basic types Map + Filter

Int32, Int64 Single Table Query

Char[n]

Float32, Float64 _<|§1 , C2

condition;

Multi Table JOIN

c1, c2
T1, T2
condition;

Reduce/Aggregate

SUM(c1*c2)
T

condition
c3;

Map-Filter-Reduce pattern: Same simple/powerful idea in
MapReduce, Hadoop, Spark, etc.

SQL Cheat Sheet (www.sqgltutorial.org/sql-cheat-sheet)

31

QUERYING DATA FROM A TABLE

SQL CHEAT SHEET http://www.sqltutorial.org

QUERYING FROM MULTIPLE TABLES

SELECT <1, ¢c2 FROM t;
Query data in columns c1, ¢2 from a table

SELECT * FROM ¢t;
Query all rows and columns from a table

SELECT ¢1, ¢2 FROM t
WHERE condition;
Query data and filter rows with a condition

SELECT DISTINCT ¢1 FROM t
WHERE condition;
Query distinct rows from a table

SELECT cl, ¢2 FROM t

ORDER BY ¢l ASC [DESC];

Sort the result set in ascending or descending
order

SELECT cl, ¢c2 FROM t

ORDER BY cl1

LIMIT n OFFSET offset;

Skip offset of rows and return the next n rows

SELECT cl, aggregate(c2)

FROM t

GROUP BY cl;

Group rows using an aggregate function

SELECT cl, aggregate(c2)

FROM t

GROUP BY cl1

HAVING condition;

Filter groups using HAVING clause

SELECT 1, c2

FROM t1

INNER JOIN t2 ON condition;
Inner join t1 and 12

SELECT ¢1, ¢c2

FROM tl

LEFT JOIN t2 ON condition;
Left join 11 and 11

SELECT 1, c2

FROM t1

RIGHT JOIN t2 ON condition;
Right join 11 and 12

SELECT 1, c2

FROM t1

FULL OUTER JOIN t2 ON condition;
Perform full outer join

SELECT cl, c2

FROM t1

CROSS JOIN t2;

Produce a Cartesian product of rows in tables

SELECT c1, ¢2
FROM 1t1, t2;
Another way to perform cross join

SELECT 1, c2

FROM t1 A

INNER JOIN t2 B ON condition;

Join 11 to itself using INNER JOIN clause

USING SQL OPERATORS

SELECT cl1, ¢2 FROM t1
UNION [ALL]

SELECT cl, ¢c2 FROM t2;
Combine rows from two gueries

SELECT cl1, ¢2 FROM t1

INTERSECT

SELECT cl, ¢2 FROM t2;

Return the intersection of two queries

SELECT ¢1, ¢2 FROM t1

MINUS

SELECT ¢1, ¢2 FROM t2;

Subtract a result set from another result set

SELECT cl, ¢c2 FROM tl1
WHERE c1 [NOT] LIKE pattern;
Query rows using pattern matching %, _

SELECT cl, ¢c2 FROM t
WHERE ¢l [NOT] IN value._list;
Query rows in a list

SELECT <1, ¢2 FROM t
WHERE ¢1 BETWEEN low AND high;
Query rows between two values

SELECT cl, ¢2 FROM t
WHERE ¢l 1S [NOT] NULL;
Check if values in a table is NULL or not

Other data models

32

32

Key-Value — The simplest model: every piece of data is stored as a key mapped to a value (which can
be anything—string, JSON, binary blob). No schema, no relationships. Examples: Redis, DynamoDB,
etcd. Great for caching, session storage, and simple lookups where you always know the key.

Document — Stores semi-structured documents (typically JSON or BSON) that can have nested fields
and varying structures. Unlike relational tables, each document can have different fields. Examples:
MongoDB, CouchDB, Firestore. Good for content management, user profiles, and applications where
schema flexibility matters.

Wide-Column / Column-Family — Data is organized by columns rather than rows, with rows that can
have different columns. Optimized for queries over large datasets where you typically read specific
columns across many rows. Examples: Cassandra, HBase, Google Bigtable. Common for time-series
data, analytics, and write-heavy workloads.

Graph — Models data as nodes (entities) and edges (relationships), with properties on both. Traversing
relationships is a first-class operation rather than an expensive join. Examples: Neo4j, Amazon Neptune,
TigerGraph. Ideal for social networks, fraud detection, and recommendation engines.

Time-Series — Optimized specifically for timestamped data points, with efficient compression and time-
based queries. Examples: InfluxDB, TimescaleDB, Prometheus. Used for metrics, loT sensor data, and

monitoring.

Vector — Stores high-dimensional embeddings and supports similarity search (nearest neighbor queries).
Examples: Pinecone, Milvus, pgvector. Essential for Al applications like semantic search and RAG
systems.

Intro to SQL

34

e SQL is a standard language for querying
and manipulating data

e SQL is a very high-level programming
language

® This works because it is optimized well!

SQL stands for
Structured

Query
Language

SQL is a...

e Data Manipulation Language (DML)
Query one or more tables
Insert/delete/modify tuples in tables

e Data Definition Language (DDL)

Define relational schemata
Create/alter/delete tables and their attributes

35

Basic Set Algebra Concepts

36

Basic Set Algebra Concepts

= List: [1, 1, 2, 3] Ordered, duplicates

36

Basic Set Algebra Concepts

= List: [1, 1, 2, 3] Ordered, duplicates
= Set: {2, 1, 3} Unordered, no duplicates

36

36

List: [1, 1, 2, 3]
Set: {2, 1, 3}
Multiset: {2, 1, 3, 1}

Ordered, duplicates
Unordered, no duplicates

Unordered, duplicates

36

List: [1, 1, 2, 3] Ordered, duplicates
Set: {2, 1, 3} Unordered, no duplicates
Multiset: {2, 1, 3, 1} Unordered, duplicates

Unions:
Set: {2, 1,3} U {2, 3} ={2, 1, 3}
Multiset: {2, 1, 3} U {2, 3} ={2, 1, 3, 2, 3}

36

List: [1, 1, 2, 3] Ordered, duplicates
Set: {2, 1, 3} Unordered, no duplicates
Multiset: {2, 1, 3, 1} Unordered, duplicates

Unions:
Set: {2, 1,3} U {2, 3} ={2, 1, 3}
Multiset: {2, 1, 3} U {2, 3} ={2, 1, 3, 2, 3}

36

List: [1, 1, 2, 3] Ordered, duplicates
Set: {2, 1, 3} Unordered, no duplicates
Multiset: {2, 1, 3, 1} Unordered, duplicates

Unions:
Set: {2, 1,3} U {2, 3} ={2, 1, 3}
Multiset: {2, 1, 3} U {2, 3} ={2, 1, 3, 2, 3}

Cross-product:
{1,1,2,3} " {y. z} = {1, yh, {1, y1. {2, ¥y}, 8, v}, {1. 2}, {1, 2}, {2, 2}, {3, Z}

Tables in SQL

Product

PName
Gizmo
Powergizmo
SingleTouch

MultiTouch

Price

$19.99

$29.99

$149.99

$203.99

Manuf

GizmoWorks

GizmoWorks

Canon

Hitachi

A relation or table
IS a multiset of
tuples/rows having
the attributes
specified by the
schema

Tables in SQL

4 N
Gizmo $19.99 GizmoWorks i
An attribute (or
column) is a typed
Powergizmo $29.99 GizmoWorks data entry present
In each tuple in the
SingleTouch $149.99 Canon relation
MultiTouch $203.99 Hitachi
N /

Attributes must have an

atomic type in standard SQL,
I.e. not a list, set, efc.

Tables in SQL

Product
PName Price Manuf
Gizmo $19.99 GizmoWorks
Powergizmo $29.99 GizmoWorks
SingleTouch $149.99 Canon
$203.99

{ MultiTouch

Hitachi J

A tuple or row or
record is a single
entry in the table
having the attributes
specified by the
schema

Tables in SQL

Product

PName

Gizmo

Powergizmo

SingleTouch

MultiTouch

Price

$19.99

$29.99

$149.99

$203.99

Manuf

GizmoWorks

GizmoWorks

Canon

Hitachi

The number of attributes is the arity

of the relation

The number of tuples

is the cardinality of
the relation

Data Types in SQL

Atomic types:

Characters: CHAR(20), VARCHAR(50)

Numbers: INT, BIGINT, SMALLINT, FLOAT
Others: MONEY, DATETIME...

Every attribute must have an atomic type

41

Table Schemas

Table Schemas

The schema of a table is the table name, its attributes,
and their types:

Table Schemas

The schema of a table is the table name, its attributes,
and their types:

A key Is an attribute whose values are unique; we
underline a key

Table Schemas

The schema of a table is the table name, its attributes,
and their types:

A key Is an attribute whose values are unique; we
underline a key

..

Key constraints

Key constraints

A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

e AKkey is an implicit constraint on which
tuples can be in the relation

e |.e. If two tuples agree on the values of the
key, then they must be the same tuple!

Key constraints

A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

e AKkey is an implicit constraint on which
tuples can be in the relation

e |.e. If two tuples agree on the values of the
key, then they must be the same tuple!

Key constraints

A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

e AKkey is an implicit constraint on which
tuples can be in the relation
e |.e. If two tuples agree on the values of the

key, then they must be the same tuple!

1. Which would you select as a key?

Key constraints

A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

e AKkey is an implicit constraint on which
tuples can be in the relation
e |.e. If two tuples agree on the values of the

key, then they must be the same tuple!

1. Which would you select as a key?
2. |s a key always guaranteed to exist?

Declaring Schema

NULL and NOT NULL

NULL and NOT NULL

e To say “does not have value,” we use NULL

{Students(cuid:string, name:string, gpa: float) J

NULL and NOT NULL

e To say “does not have value,” we use NULL

[Students(cuid:string, name:string, gpa: float)

3 Say, Jim just enrolled in his first class.

cuid name gpa
123 Alice
143 Jim NULL

NULL and NOT NULL

e To say “does not have value,” we use

| |

123 Alice 3. say, Jim just enrolled in his first class.

143 Jim NULL

In SQL, we may constrain a column to be NOT NULL,
e.dg., 'name’ in this table

NULL and NOT NULL

e To say “does not have value,” we use NULL

[Students(cuid:string, name:string, gpa: float) }

cuid name gpa

123 Alice 3. say, Jim just enrolled in his firs

143 Jim NULL

In SQL, we may constrain a column to be NOT NULL,
e.dg., 'name’ in this table

https://www.youtube.com/watch?v=ybrQvs4x0Ps

General Constraints

General Constraints

e \We can actually specify arbitrary assertions
E.g. “There cannot be 25 people in the DB class”

e |n practice, we don’t specify many such
constraints. Why?
Performance!

Usually we do something ugly (or avoid doing something
convenient) for the sake of performance

Summary of Schema Information

e Schema and Constraints are how databases understand the
semantics (meaning) of data

e SQL supports general constraints:
Keys are most important

48

Translation layer between external
clients and internal database schema

Same logical entity might be
represented differently

(e.g., database splits User across
multiple tables, but APl returns a
single unified User object)

API| can hide sensitive database
details or expose computed/
aggregated data not directly stored

Database schema can change
without breaking the API if the
translation layer is updated
accordingly

48

Translation layer between external
clients and internal database schema

Same logical entity might be
represented differently

(e.g., database splits User across
multiple tables, but APl returns a
single unified User object)

API| can hide sensitive database
details or expose computed/
aggregated data not directly stored

Database schema can change
without breaking the API if the
translation layer is updated
accordingly

Defines the structure of data in transit

request/response formats, endpoints,
parameters

Optimized for usability, clarity, and client
needs

External contract - publicly exposed
interface that clients depend on

Uses language-agnostic formats

(JSON, XML, Protocol Buffers) with
type systems

Changes must maintain backward
compatibility or use versioning

49

APl Schema definition language

Provides libraries for convenience

Comparable to JSON and XML
But better!

Binary on the wire

Protocol Buffers

= APl Schema definition language
= Provides libraries for convenience
= Comparable to JSON and XML

= But better!

= Binary on the wire

49

edition = "2023";

package tutorial;

message Person {
string name = 1;
int32 id =
string email = 3;

enum PhoneType {

U

HONE_TY
HONE_TYPE_HOME =
AONE_TYPE_WORK

U

Il
WN

U

}

message PhoneNumber {
string number = 1;
PhoneType type = 2;
}

repeated PhoneNumber phones

}

message AddressBook {
repeated Person people

}

PHONE_TYPE_UNSPECIFIED =
PE_MOBILE = 1,

1;

0;

UberBlog Explore v

Engineering

Engineering

Overview Backend

® EN Q Search

Culture Data/ML Mobile Security UberAl Web

Evolving Schemaless into a
Distributed SQL Database

February 23,2021 / Global

\
Shard Local Transactions |

Highly-available transactions via a |

. combination of MySQL and RAFT 5,

Associations

Support for one-to-many and many-to-

many relationships
\ J/

Materialized View

2.

Geo Replication

g8

DOCSTORE

MVs partition data in a different way
as compared to the main table
_)

Asynchronous atomic replication between
regions; region-local strong consistency

/

—_

D Flexible Document Model |

Multi-model support allow both relational

and document-oriented modeling; tables

can have composite primary and partition
keys

\\
\‘.

' 4
4

Change Data Capture

Allow capturing changes at the source and
\can be used for event-driven programming/

Flexible schema, not no schemal

Centralizing the complexity of consistency

Operational reality may not be “beautiful”

https://www.uber.com/blog/schemaless-sql-database/

https://www.uber.com/blog/schemaless-sql-database/

Uber Blog

Engineering -

Engineering, Backend, Mobile

Uber’s Next Gen Push Platform on gRPC

August 16, 2022 / Global

Not request/response but streaming
From REST-like to RPC-like
Transport is as important as anything else

Don’t reinvent the wheel

SSSSSSSS

Service A Service C

In our last blog post we talked about how we went from polling for refreshing the app to a push-

based flow to build our app experience https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

