
Lecture 2

Lecture 1: summary

2

Lecture 1: summary

▪ Class is about computer systems for data science

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)
– Amdahl’s law:

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)
– Amdahl’s law:

–
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =

𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)
– Amdahl’s law:

–
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =

𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

– Speedup bounded by: 1
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)
– Amdahl’s law:

–
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =

𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

– Speedup bounded by: 1
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

– Time scales in computer systems can vary by millions

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)
– Amdahl’s law:

–
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =

𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

– Speedup bounded by: 1
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

– Time scales in computer systems can vary by millions
• CPUs and memory operate in nanoseconds

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)
– Amdahl’s law:

–
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =

𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

– Speedup bounded by: 1
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

– Time scales in computer systems can vary by millions
• CPUs and memory operate in nanoseconds
• Datacenter networks and SSDs operates in microseconds

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)
– Amdahl’s law:

–
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =

𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

– Speedup bounded by: 1
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

– Time scales in computer systems can vary by millions
• CPUs and memory operate in nanoseconds
• Datacenter networks and SSDs operates in microseconds
• Sending stuff over the Internet operates in milliseconds

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)
– Amdahl’s law:

–
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =

𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

– Speedup bounded by: 1
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

– Time scales in computer systems can vary by millions
• CPUs and memory operate in nanoseconds
• Datacenter networks and SSDs operates in microseconds
• Sending stuff over the Internet operates in milliseconds

▪ Intro to datacenters

2

Lecture 1: summary

▪ Class is about computer systems for data science
– Very little math or algorithms
– Broad overview of computer systems and databases

▪ Performance concepts and rules of thumbs
– Throughput and latency: two orthogonal metrics to evaluate computer systems (and

pizzerias)
– Amdahl’s law:

–
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =

𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

– Speedup bounded by: 1
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

– Time scales in computer systems can vary by millions
• CPUs and memory operate in nanoseconds
• Datacenter networks and SSDs operates in microseconds
• Sending stuff over the Internet operates in milliseconds

▪ Intro to datacenters
– Modern datacenter design: standard hardware, replicated in racks (cabinets), rows,

deployed in football stadium-sized warehouses

2

Lecture 2: What are we covering today?

3

Lecture 2: What are we covering today?

▪Wrapping up data centers
– Power/cooling
– Networking
– AI datacenters

3

https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

Lecture 2: What are we covering today?

▪Wrapping up data centers
– Power/cooling
– Networking
– AI datacenters

▪ Single table SQL
– Relational model
– Schemas
– Data types
– Limits
– Basic queries

3

https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

Lecture 2: What are we covering today?

▪Wrapping up data centers
– Power/cooling
– Networking
– AI datacenters

▪ Single table SQL
– Relational model
– Schemas
– Data types
– Limits
– Basic queries

▪ Schema evolution
– API schema
– Case studies [1, 2]

3

https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

Row/Cluster

● 30+ racks

Network Topology

5

Network Topology

5

Networking - Switch locations

Networking - Switch locations

● Top-of-rack switch
○ Connecting machines in rack
○ Multiple links going to end-of-row routers

Networking - Switch locations

● Top-of-rack switch
○ Connecting machines in rack
○ Multiple links going to end-of-row routers

Networking - Switch locations

● Top-of-rack switch
○ Connecting machines in rack
○ Multiple links going to end-of-row routers

● End-of-row router
○ Aggregate row of machines
○ Multiple links going to core routers

Networking - Switch locations

● Top-of-rack switch
○ Connecting machines in rack
○ Multiple links going to end-of-row routers

● End-of-row router
○ Aggregate row of machines
○ Multiple links going to core routers

Networking - Switch locations

● Top-of-rack switch
○ Connecting machines in rack
○ Multiple links going to end-of-row routers

● End-of-row router
○ Aggregate row of machines
○ Multiple links going to core routers

● Core router
○ Multiple core routers

Networking - Switch locations

● Top-of-rack switch
○ Connecting machines in rack
○ Multiple links going to end-of-row routers

● End-of-row router
○ Aggregate row of machines
○ Multiple links going to core routers

● Core router
○ Multiple core routers

● Each of these have different latencies, throughput
○ Higher in hierarchy -> higher throughput

Multipath routing

Multipath routing

Multipath routing

Power Usage Effectiveness (PUE)

● Early data centers built with off-the-shelf components
○ Standard servers
○ HVAC unit designs from malls

PUE ratio = Total Facility Power
 Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0

Power Usage Effectiveness (PUE)

● Early data centers built with off-the-shelf components
○ Standard servers
○ HVAC unit designs from malls

PUE ratio = Total Facility Power
 Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0

● Average PUE for AWS datacenters in 2024: 1.15 (only 15% from optimal!)

Power Usage Effectiveness (PUE)

● Early data centers built with off-the-shelf components
○ Standard servers
○ HVAC unit designs from malls

PUE ratio = Total Facility Power
 Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0

● Average PUE for AWS datacenters in 2024: 1.15 (only 15% from optimal!)

● Some can be 1.04

● Power is about 25% of monthly operating cost
○ And is (one of) the limiting factor in how large the datacenter can be

Energy Efficient Data Centers

● Better power distribution - Fewer transformers

Energy Efficient Data Centers

● Better power distribution - Fewer transformers

● Better cooling - use environment (air/water) rather than air conditioning
○ Bring in outside air
○ Evaporate some water

Energy Efficient Data Centers

● Better power distribution - Fewer transformers

● Better cooling - use environment (air/water) rather than air conditioning
○ Bring in outside air
○ Evaporate some water

● IT Equipment range
○ OK up to +115℉

Liquid immersion is the “hottest” new technology for
cooling data centers

10

https://www.youtube.com/watch?v=U6LQeFmY-IU

Liquid immersion is the “hottest” new technology for
cooling data centers

10

https://www.youtube.com/watch?v=U6LQeFmY-IU

Liquid immersion is the “hottest” new technology for
cooling data centers

10

https://www.youtube.com/watch?v=U6LQeFmY-IU

Backup Power

Backup Power

● Massive amount of batteries to tolerate short glitches in power

Backup Power

● Massive amount of batteries to tolerate short glitches in power
○ Just need long enough for backup generators to startup

Backup Power

● Massive amount of batteries to tolerate short glitches in power
○ Just need long enough for backup generators to startup

● How do glitches occur?

Backup Power

● Massive amount of batteries to tolerate short glitches in power
○ Just need long enough for backup generators to startup

● How do glitches occur?

○ Thunder, earthquake, power loss from power company, cyber attack, …

Backup Power

● Massive amount of batteries to tolerate short glitches in power
○ Just need long enough for backup generators to startup

● How do glitches occur?

○ Thunder, earthquake, power loss from power company, cyber attack, …

● Massive collections of backup generators

Backup Power

● Massive amount of batteries to tolerate short glitches in power
○ Just need long enough for backup generators to startup

● How do glitches occur?

○ Thunder, earthquake, power loss from power company, cyber attack, …

● Massive collections of backup generators

● Huge fuel tanks to provide fuel for the generators

Backup Power

● Massive amount of batteries to tolerate short glitches in power
○ Just need long enough for backup generators to startup

● How do glitches occur?

○ Thunder, earthquake, power loss from power company, cyber attack, …

● Massive collections of backup generators

● Huge fuel tanks to provide fuel for the generators

● Fuel replenishment transportation network (e.g. fuel trucks)

Backup Power

● Massive amount of batteries to tolerate short glitches in power
○ Just need long enough for backup generators to startup

● How do glitches occur?

○ Thunder, earthquake, power loss from power company, cyber attack, …

● Massive collections of backup generators

● Huge fuel tanks to provide fuel for the generators

● Fuel replenishment transportation network (e.g. fuel trucks)

Energy sources

12

Energy sources

● Increasingly, data centers powered by renewable energy

12

Energy sources

● Increasingly, data centers powered by renewable energy

○ But, solar/wind are intermittent

12

Energy sources

● Increasingly, data centers powered by renewable energy

○ But, solar/wind are intermittent

○ Hydro, nuclear are more reliable

12

Energy sources

● Increasingly, data centers powered by renewable energy

○ But, solar/wind are intermittent

○ Hydro, nuclear are more reliable

12

Energy sources

● Increasingly, data centers powered by renewable energy

○ But, solar/wind are intermittent

○ Hydro, nuclear are more reliable

● In practice, many new data centers powered by solar / wind but rely on fossil
fuels from the electric grid when the wind isn’t blowing / sun isn’t shining

12

Energy sources

● Increasingly, data centers powered by renewable energy

○ But, solar/wind are intermittent

○ Hydro, nuclear are more reliable

● In practice, many new data centers powered by solar / wind but rely on fossil
fuels from the electric grid when the wind isn’t blowing / sun isn’t shining

12

Fault Tolerance

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy
○ Multiple independent copies of all data

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy
○ Multiple independent copies of all data
○ Independent? Consistency :(

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy
○ Multiple independent copies of all data
○ Independent? Consistency :(

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy
○ Multiple independent copies of all data
○ Independent? Consistency :(

○ Multiple independent network connections

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy
○ Multiple independent copies of all data
○ Independent? Consistency :(

○ Multiple independent network connections
○ Under utilized capacity

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy
○ Multiple independent copies of all data
○ Independent? Consistency :(

○ Multiple independent network connections
○ Under utilized capacity

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy
○ Multiple independent copies of all data
○ Independent? Consistency :(

○ Multiple independent network connections
○ Under utilized capacity

○ Multiple copies of every service

Fault Tolerance

● At the scale of new data centers, things are breaking constantly

● Every aspect of the data center must be able to tolerate failures

● Solution: Redundancy
○ Multiple independent copies of all data
○ Independent? Consistency :(

○ Multiple independent network connections
○ Under utilized capacity

○ Multiple copies of every service
○ Releases, update cycles, resource use

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)
~5 racks go wonky (40-80 machines see 50% packet loss)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)
~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)
~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)
~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)
~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)
~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)
~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

 Reliability must come from software!

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)
~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

 Reliability must come from software!

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures
~1000 individual machine failures
~dozens of minor 30-second blips for DNS

It’s always DNS (unless it’s BGP)
~3 router failures (have to immediately pull traffic for an hour)
~12 router reloads (takes out DNS and external VIPs for a couple minutes)
~8 network maintenances (might cause ~30-minute random connectivity losses)
~5 racks go wonky (40-80 machines see 50% packet loss)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

 Reliability must come from software!

Comparing AI datacenters to traditional ones

15

Comparing AI datacenters to traditional ones

● Similarities

15

Comparing AI datacenters to traditional ones

● Similarities

○ Same rack/row topology

15

Comparing AI datacenters to traditional ones

● Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

15

Comparing AI datacenters to traditional ones

● Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

15

Comparing AI datacenters to traditional ones

● Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

● Differences

15

Comparing AI datacenters to traditional ones

● Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

● Differences

○ Compute: Thousands of GPUs, small ratio of CPU/GPU

15

Comparing AI datacenters to traditional ones

● Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

● Differences

○ Compute: Thousands of GPUs, small ratio of CPU/GPU

○ Memory: Don’t need as much traditional CPU memory, require lots of on-GPU High
Bandwidth Memory (HBM), which is much more expensive

15

Comparing AI datacenters to traditional ones

● Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

● Differences

○ Compute: Thousands of GPUs, small ratio of CPU/GPU

○ Memory: Don’t need as much traditional CPU memory, require lots of on-GPU High
Bandwidth Memory (HBM), which is much more expensive

○ Network: AI training has much more demanding networking requirements. Requires
dedicated high-bandwidth networking both within a server (e.g., NVIDIA’s NVLINK)
and across servers (e.g., Infiniband)

15

Comparing AI datacenters to traditional ones

● Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

● Differences

○ Compute: Thousands of GPUs, small ratio of CPU/GPU

○ Memory: Don’t need as much traditional CPU memory, require lots of on-GPU High
Bandwidth Memory (HBM), which is much more expensive

○ Network: AI training has much more demanding networking requirements. Requires
dedicated high-bandwidth networking both within a server (e.g., NVIDIA’s NVLINK)
and across servers (e.g., Infiniband)

15

Comparing AI datacenters to traditional ones

● Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

● Differences

○ Compute: Thousands of GPUs, small ratio of CPU/GPU

○ Memory: Don’t need as much traditional CPU memory, require lots of on-GPU High
Bandwidth Memory (HBM), which is much more expensive

○ Network: AI training has much more demanding networking requirements. Requires
dedicated high-bandwidth networking both within a server (e.g., NVIDIA’s NVLINK)
and across servers (e.g., Infiniband)

● We will cover these topics more deeply in the second half of the class

15

Where should you build your datacenter?

Where should you build your datacenter?

● Plentiful, inexpensive electricity
○ Examples - Oregon: Hydroelectric; Iowa: Wind
○ Increasingly: nuclear, thermal

Where should you build your datacenter?

● Plentiful, inexpensive electricity
○ Examples - Oregon: Hydroelectric; Iowa: Wind
○ Increasingly: nuclear, thermal

● Good network connections
○ Access to the Internet backbone

Where should you build your datacenter?

● Plentiful, inexpensive electricity
○ Examples - Oregon: Hydroelectric; Iowa: Wind
○ Increasingly: nuclear, thermal

● Good network connections
○ Access to the Internet backbone

● Inexpensive land

Where should you build your datacenter?

● Plentiful, inexpensive electricity
○ Examples - Oregon: Hydroelectric; Iowa: Wind
○ Increasingly: nuclear, thermal

● Good network connections
○ Access to the Internet backbone

● Inexpensive land

● Geographically near users
○ Speed of light latency
○ Country laws (e.g. Our citizen's data must be kept in our county.)

Where should you build your datacenter?

● Plentiful, inexpensive electricity
○ Examples - Oregon: Hydroelectric; Iowa: Wind
○ Increasingly: nuclear, thermal

● Good network connections
○ Access to the Internet backbone

● Inexpensive land

● Geographically near users
○ Speed of light latency
○ Country laws (e.g. Our citizen's data must be kept in our county.)

● Available labor pool

Where should you build your datacenter?

● Plentiful, inexpensive electricity
○ Examples - Oregon: Hydroelectric; Iowa: Wind
○ Increasingly: nuclear, thermal

● Good network connections
○ Access to the Internet backbone

● Inexpensive land

● Geographically near users
○ Speed of light latency
○ Country laws (e.g. Our citizen's data must be kept in our county.)

● Available labor pool

● Politics
○ Crime and corruption

○ Tax breaks

○ AI regulations

Google Data Center - Council Bluffs, Iowa, USA

Source: semianalysis

Google data center pictures: Council Bluffs

Datacenter “megasites”

19
Source: semianalysis

● Four Google datacenter sites within a 50-mile radius of each other, in the
Iowa/Nebraska region

● May reach GW of total power consumption

General application guidance

General application guidance

● A “responsible” data center tenant

General application guidance

● A “responsible” data center tenant

○ Organizes jobs and tasks into tiers

General application guidance

● A “responsible” data center tenant

○ Organizes jobs and tasks into tiers

○ Localizes and colocates

General application guidance

● A “responsible” data center tenant

○ Organizes jobs and tasks into tiers

○ Localizes and colocates

○ Minimizes bandwidth usage

General application guidance

● A “responsible” data center tenant

○ Organizes jobs and tasks into tiers

○ Localizes and colocates

○ Minimizes bandwidth usage

○ Uses the right models (pubsub, RPCs, batch workflows)

General application guidance

● A “responsible” data center tenant

○ Organizes jobs and tasks into tiers

○ Localizes and colocates

○ Minimizes bandwidth usage

○ Uses the right models (pubsub, RPCs, batch workflows)

○ Respects quotas

General application guidance

● A “responsible” data center tenant

○ Organizes jobs and tasks into tiers

○ Localizes and colocates

○ Minimizes bandwidth usage

○ Uses the right models (pubsub, RPCs, batch workflows)

○ Respects quotas

○ Provides telemetry for observation and adjustment

Summary

21

Summary

● It’s easy as data scientists (or software engineers) to lose sight that
our code actually runs somewhere physically

21

Summary

● It’s easy as data scientists (or software engineers) to lose sight that
our code actually runs somewhere physically

● The cloud is not some abstract concept: these are huge physical sites
consuming power equivalent to entire cities

21

Summary

● It’s easy as data scientists (or software engineers) to lose sight that
our code actually runs somewhere physically

● The cloud is not some abstract concept: these are huge physical sites
consuming power equivalent to entire cities

● AI is accelerating the construction of new data centers

21

Summary

● It’s easy as data scientists (or software engineers) to lose sight that
our code actually runs somewhere physically

● The cloud is not some abstract concept: these are huge physical sites
consuming power equivalent to entire cities

● AI is accelerating the construction of new data centers

● Datacenter sustainability (especially in the age of AI) is going to be
extremely important in the coming years

21

Computer Systems for Data Science
Topic 2

Relational Model and SQL

Borrowed from Shiva Shivakumar and Theodoros Rekatsinas

What we’ll cover in this topic

▪ Intuition
– Basic relational model
– Map-filter-reduce concept

▪ Intro to SQL
– Schemas, query structure of SELECT-FROM-WHERE, JOINs

23

Relational Model: Intuition

A Motivating Example

25

A basic Course Management System (CMS):

Entities or Relation (e.g., Students, Courses)
Relationships (e.g., Alice is enrolled in CSEE
4121)

A Motivating Example

25

A basic Course Management System (CMS):

Entities or Relation (e.g., Students, Courses)
Relationships (e.g., Alice is enrolled in CSEE
4121)

A Motivating Example

25

A basic Course Management System (CMS):

Entities or Relation (e.g., Students, Courses)
Relationships (e.g., Alice is enrolled in CSEE
4121)

Intuition: Spreadsheet Tables

26

Intuition: Spreadsheet Tables

26

Intuition: Spreadsheet Tables

Logical Schema

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:
string)

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:
string)
Enrolled(cuid: string, cid: string, grade:
string)

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:
string)
Enrolled(cuid: string, cid: string, grade:
string)

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:
string)
Enrolled(cuid: string, cid: string, grade:
string)

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:
string)
Enrolled(cuid: string, cid: string, grade:
string)

Queries [“compute” over tables]

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:
string)
Enrolled(cuid: string, cid: string, grade:
string)

Queries [“compute” over tables]
Alice’s GPA?

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:
string)
Enrolled(cuid: string, cid: string, grade:
string)

Queries [“compute” over tables]
Alice’s GPA?
Jay’s classes?

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:
string)
Enrolled(cuid: string, cid: string, grade:
string)

Queries [“compute” over tables]
Alice’s GPA?
Jay’s classes?
AVG student GPA?

26

Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:
string)
Enrolled(cuid: string, cid: string, grade:
string)

Queries [“compute” over tables]
Alice’s GPA?
Jay’s classes?
AVG student GPA?
AVG student GPA in CSEE 4121?

26

Relational Model and Schemas

27

Relational Model and Schemas

▪ Definition: Data model

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

▪ Definition: Schema

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

▪ Definition: Schema
– Describes blueprint of table(s)

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

▪ Definition: Schema
– Describes blueprint of table(s)

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

▪ Definition: Schema
– Describes blueprint of table(s)

▪ Every relation has a schema

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

▪ Definition: Schema
– Describes blueprint of table(s)

▪ Every relation has a schema
– Logical Schema: describes types, names

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

▪ Definition: Schema
– Describes blueprint of table(s)

▪ Every relation has a schema
– Logical Schema: describes types, names
– Physical Schema: describes data layout

27

Relational Model and Schemas

▪ Definition: Data model
– Organizing principle of data + operations

▪ Relational model (aka tables)
– Simple and most popular
– Elegant algebra (E.F. Codd et al)

▪ Definition: Schema
– Describes blueprint of table(s)

▪ Every relation has a schema
– Logical Schema: describes types, names
– Physical Schema: describes data layout
– Virtual Schema (Views): derived tables

27

Data Independence

28

Data Independence

1. Can we add a new column or attribute without
rewriting the application?

28

Data Independence

1. Can we add a new column or attribute without
rewriting the application?

28

Data Independence

1. Can we add a new column or attribute without
rewriting the application?

– Logical Data Independence

28

Data Independence

1. Can we add a new column or attribute without
rewriting the application?

– Logical Data Independence
• Protection from changes in the logical structure of the data

28

Data Independence

1. Can we add a new column or attribute without
rewriting the application?

– Logical Data Independence
• Protection from changes in the logical structure of the data

28

Data Independence

1. Can we add a new column or attribute without
rewriting the application?

– Logical Data Independence
• Protection from changes in the logical structure of the data

2. Do you need to care which disks/machines are the
data stored on?

28

Data Independence

1. Can we add a new column or attribute without
rewriting the application?

– Logical Data Independence
• Protection from changes in the logical structure of the data

2. Do you need to care which disks/machines are the
data stored on?

28

Data Independence

1. Can we add a new column or attribute without
rewriting the application?

– Logical Data Independence
• Protection from changes in the logical structure of the data

2. Do you need to care which disks/machines are the
data stored on?

– Physical Data Independence

28

Data Independence

1. Can we add a new column or attribute without
rewriting the application?

– Logical Data Independence
• Protection from changes in the logical structure of the data

2. Do you need to care which disks/machines are the
data stored on?

– Physical Data Independence
• Protection from Physical Layout Changes

28

Python Operating on Lists

29

Python Operating on Lists

29

Basic types
• Int
• Long
• String

Python Operating on Lists

29

Basic types
• Int
• Long
• String

Map + Filter
• map(function, list)
• filter(function, list)

Map applies function
to input list
Filter returns sub list
that satisfies filter
condition

Python Operating on Lists

29

Basic types
• Int
• Long
• String

Map + Filter
• map(function, list)
• filter(function, list)

Map applies function
to input list
Filter returns sub list
that satisfies filter
condition

Reduce/Aggregate
• reduce(…)

Reduce runs a
computation on a list
and returns a result
E.g., SUM, AVG, MAX

SQL Queries on Tables (Lists of Rows)

30

SQL Queries on Tables (Lists of Rows)

30

Basic types
• Int32, Int64
• Char[n]
• Float32, Float64

SQL Queries on Tables (Lists of Rows)

30

Basic types
• Int32, Int64
• Char[n]
• Float32, Float64

Map + Filter
Single Table Query

SELECT c1, c2
FROM T
WHERE condition;

SQL Queries on Tables (Lists of Rows)

30

Basic types
• Int32, Int64
• Char[n]
• Float32, Float64

Map + Filter
Single Table Query

SELECT c1, c2
FROM T
WHERE condition;

Multi Table JOIN

SELECT c1, c2
FROM T1, T2
WHERE condition;

SQL Queries on Tables (Lists of Rows)

30

Basic types
• Int32, Int64
• Char[n]
• Float32, Float64

Map + Filter
Single Table Query

SELECT c1, c2
FROM T
WHERE condition;

Reduce/Aggregate

SELECT SUM(c1*c2)
FROM T
WHERE condition
GROUP BY c3;

Multi Table JOIN

SELECT c1, c2
FROM T1, T2
WHERE condition;

SQL Queries on Tables (Lists of Rows)

30

Basic types
• Int32, Int64
• Char[n]
• Float32, Float64

Map + Filter
Single Table Query

SELECT c1, c2
FROM T
WHERE condition;

Reduce/Aggregate

SELECT SUM(c1*c2)
FROM T
WHERE condition
GROUP BY c3;

Multi Table JOIN

SELECT c1, c2
FROM T1, T2
WHERE condition;

Map-Filter-Reduce pattern: Same simple/powerful idea in
MapReduce, Hadoop, Spark, etc.

SQL Cheat Sheet (www.sqltutorial.org/sql-cheat-sheet)

31

Other data models

32

Other data models

32

Key-Value — The simplest model: every piece of data is stored as a key mapped to a value (which can
be anything—string, JSON, binary blob). No schema, no relationships. Examples: Redis, DynamoDB,
etcd. Great for caching, session storage, and simple lookups where you always know the key.

Document — Stores semi-structured documents (typically JSON or BSON) that can have nested fields
and varying structures. Unlike relational tables, each document can have different fields. Examples:
MongoDB, CouchDB, Firestore. Good for content management, user profiles, and applications where
schema flexibility matters.

Wide-Column / Column-Family — Data is organized by columns rather than rows, with rows that can
have different columns. Optimized for queries over large datasets where you typically read specific
columns across many rows. Examples: Cassandra, HBase, Google Bigtable. Common for time-series
data, analytics, and write-heavy workloads.

Graph — Models data as nodes (entities) and edges (relationships), with properties on both. Traversing
relationships is a first-class operation rather than an expensive join. Examples: Neo4j, Amazon Neptune,
TigerGraph. Ideal for social networks, fraud detection, and recommendation engines.

Time-Series — Optimized specifically for timestamped data points, with efficient compression and time-
based queries. Examples: InfluxDB, TimescaleDB, Prometheus. Used for metrics, IoT sensor data, and
monitoring.

Vector — Stores high-dimensional embeddings and supports similarity search (nearest neighbor queries).
Examples: Pinecone, Milvus, pgvector. Essential for AI applications like semantic search and RAG
systems.

Intro to SQL

SQL Introduction

● SQL is a standard language for querying
and manipulating data

● SQL is a very high-level programming
language

● This works because it is optimized well!

34

SQL stands for
Structured
Query
Language

SQL is a…

● Data Manipulation Language (DML)
 Query one or more tables

 	 	 Insert/delete/modify tuples in tables

● Data Definition Language (DDL)
 	 Define relational schemata
 	 Create/alter/delete tables and their attributes

35

Basic Set Algebra Concepts

36

Basic Set Algebra Concepts

▪ List: [1, 1, 2, 3]	 	 Ordered, duplicates

36

Basic Set Algebra Concepts

▪ List: [1, 1, 2, 3]	 	 Ordered, duplicates

▪ Set: {2, 1, 3}	 	 Unordered, no duplicates

36

Basic Set Algebra Concepts

▪ List: [1, 1, 2, 3]	 	 Ordered, duplicates

▪ Set: {2, 1, 3}	 	 Unordered, no duplicates

▪ Multiset: {2, 1, 3, 1}	 Unordered, duplicates

36

Basic Set Algebra Concepts

▪ List: [1, 1, 2, 3]	 	 Ordered, duplicates

▪ Set: {2, 1, 3}	 	 Unordered, no duplicates

▪ Multiset: {2, 1, 3, 1}	 Unordered, duplicates

▪ Unions:
– Set: {2, 1, 3} U {2, 3} = {2, 1, 3}
– Multiset: {2, 1, 3} U {2, 3} = {2, 1, 3, 2, 3}

36

Basic Set Algebra Concepts

▪ List: [1, 1, 2, 3]	 	 Ordered, duplicates

▪ Set: {2, 1, 3}	 	 Unordered, no duplicates

▪ Multiset: {2, 1, 3, 1}	 Unordered, duplicates

▪ Unions:
– Set: {2, 1, 3} U {2, 3} = {2, 1, 3}
– Multiset: {2, 1, 3} U {2, 3} = {2, 1, 3, 2, 3}

36

Basic Set Algebra Concepts

▪ List: [1, 1, 2, 3]	 	 Ordered, duplicates

▪ Set: {2, 1, 3}	 	 Unordered, no duplicates

▪ Multiset: {2, 1, 3, 1}	 Unordered, duplicates

▪ Unions:
– Set: {2, 1, 3} U {2, 3} = {2, 1, 3}
– Multiset: {2, 1, 3} U {2, 3} = {2, 1, 3, 2, 3}

▪ Cross-product:
– {1, 1, 2, 3} * {y, z} = {1, y}, {1, y}, {2, y}, {3, y}, {1, z}, {1, z}, {2, z}, {3, z}

36

Tables in SQL
Product

PName Price Manuf

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

A relation or table
is a multiset of
tuples/rows having
the attributes
specified by the
schema

Tables in SQL
Product

An attribute (or
column) is a typed
data entry present
in each tuple in the
relation

Attributes must have an
atomic type in standard SQL,
i.e. not a list, set, etc.

PName Price Manuf

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Tables in SQL
Product

PName Price Manuf

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

A tuple or row or
record is a single
entry in the table
having the attributes
specified by the
schema

Tables in SQL
Product

PName Price Manuf

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

The number of tuples
is the cardinality of
the relation

The number of attributes is the arity
of the relation

Data Types in SQL

41

Atomic types:
 Characters: CHAR(20), VARCHAR(50)
 Numbers: INT, BIGINT, SMALLINT, FLOAT
 Others: MONEY, DATETIME…

Every attribute must have an atomic type

Table Schemas

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Table Schemas

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

The schema of a table is the table name, its attributes,
and their types:

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Table Schemas

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

The schema of a table is the table name, its attributes,
and their types:

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

A key is an attribute whose values are unique; we
underline a key

Table Schemas

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

The schema of a table is the table name, its attributes,
and their types:

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

A key is an attribute whose values are unique; we
underline a key

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Key constraints

Key constraints
A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

● A key is an implicit constraint on which
tuples can be in the relation

● i.e. if two tuples agree on the values of the
key, then they must be the same tuple!

Key constraints
A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

● A key is an implicit constraint on which
tuples can be in the relation

● i.e. if two tuples agree on the values of the
key, then they must be the same tuple!

Students(cuid:string, name:string, gpa: float)

Key constraints
A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

● A key is an implicit constraint on which
tuples can be in the relation

● i.e. if two tuples agree on the values of the
key, then they must be the same tuple!

Students(cuid:string, name:string, gpa: float)

1. Which would you select as a key?

Key constraints
A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

● A key is an implicit constraint on which
tuples can be in the relation

● i.e. if two tuples agree on the values of the
key, then they must be the same tuple!

Students(cuid:string, name:string, gpa: float)

1. Which would you select as a key?
2. Is a key always guaranteed to exist?

Declaring Schema

Students(cuid: string, name: string, gpa: float)

CREATE TABLE Students (
 cuid CHAR(20),
 name VARCHAR(50),
 gpa float,
 PRIMARY KEY (cuid),
)

NULL and NOT NULL

NULL and NOT NULL
● To say “does not have value,” we use NULL

Students(cuid:string, name:string, gpa: float)

NULL and NOT NULL

cuid name gpa

123 Alice 3.9

143 Jim NULL

Say, Jim just enrolled in his first class.

● To say “does not have value,” we use NULL

Students(cuid:string, name:string, gpa: float)

NULL and NOT NULL

cuid name gpa

123 Alice 3.9

143 Jim NULL

Say, Jim just enrolled in his first class.

● To say “does not have value,” we use NULL

Students(cuid:string, name:string, gpa: float)

In SQL, we may constrain a column to be NOT NULL,
e.g., “name” in this table

NULL and NOT NULL

cuid name gpa

123 Alice 3.9

143 Jim NULL

Say, Jim just enrolled in his first class.

● To say “does not have value,” we use NULL

Students(cuid:string, name:string, gpa: float)

In SQL, we may constrain a column to be NOT NULL,
e.g., “name” in this table

https://www.youtube.com/watch?v=ybrQvs4x0Ps

General Constraints

General Constraints

● We can actually specify arbitrary assertions
 E.g. “There cannot be 25 people in the DB class”

● In practice, we don’t specify many such
constraints. Why?

 Performance!

Usually we do something ugly (or avoid doing something
convenient) for the sake of performance

Summary of Schema Information

● Schema and Constraints are how databases understand the
semantics (meaning) of data

● SQL supports general constraints:
 	 Keys are most important

API Schema

48

● Translation layer between external
clients and internal database schema

● Same logical entity might be
represented differently

● (e.g., database splits User across
multiple tables, but API returns a
single unified User object)

● API can hide sensitive database
details or expose computed/
aggregated data not directly stored

● Database schema can change
without breaking the API if the
translation layer is updated
accordingly

API Schema

48

● Defines the structure of data in transit

● request/response formats, endpoints,
parameters

● Optimized for usability, clarity, and client
needs

● External contract - publicly exposed
interface that clients depend on

● Uses language-agnostic formats

● (JSON, XML, Protocol Buffers) with
type systems

● Changes must maintain backward
compatibility or use versioning

● Translation layer between external
clients and internal database schema

● Same logical entity might be
represented differently

● (e.g., database splits User across
multiple tables, but API returns a
single unified User object)

● API can hide sensitive database
details or expose computed/
aggregated data not directly stored

● Database schema can change
without breaking the API if the
translation layer is updated
accordingly

Protocol Buffers

▪ API Schema definition language

▪ Provides libraries for convenience

▪ Comparable to JSON and XML

▪ But better!

▪ Binary on the wire

49

Protocol Buffers

▪ API Schema definition language

▪ Provides libraries for convenience

▪ Comparable to JSON and XML

▪ But better!

▪ Binary on the wire

49

edition = "2023";

package tutorial;

message Person {
 string name = 1;
 int32 id = 2;
 string email = 3;

 enum PhoneType {
 PHONE_TYPE_UNSPECIFIED = 0;
 PHONE_TYPE_MOBILE = 1;
 PHONE_TYPE_HOME = 2;
 PHONE_TYPE_WORK = 3;
 }

 message PhoneNumber {
 string number = 1;
 PhoneType type = 2;
 }

 repeated PhoneNumber phones = 4;
}

message AddressBook {
 repeated Person people = 1;
}

https://www.uber.com/blog/schemaless-sql-database/

▪ Flexible schema, not no schema!

▪ Centralizing the complexity of consistency

▪ Operational reality may not be “beautiful”

https://www.uber.com/blog/schemaless-sql-database/

https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

▪ Not request/response but streaming

▪ From REST-like to RPC-like

▪ Transport is as important as anything else

▪ Don’t reinvent the wheel

https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/

