

---

# Lecture 2



---

## Lecture 1: summary

---

## Lecture 1: summary

- Class is about **computer systems** for data science

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)
  - Amdahl's law:

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)
  - Amdahl's law:  
$$Speedup(E) = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1 - p) + \frac{p}{S}}$$

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)
  - Amdahl's law:
    - $$Speedup(E) = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1-p) + \frac{p}{S}}$$
    - Speedup bounded by: 
$$\frac{1}{\text{fraction of time not enhanced}}$$

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)
  - Amdahl's law:
    - $$Speedup(E) = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1-p) + \frac{p}{S}}$$
    - Speedup bounded by: 
$$\frac{1}{\text{fraction of time not enhanced}}$$
    - Time scales in computer systems can vary by millions

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)
  - Amdahl's law:
    - $$Speedup(E) = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1-p) + \frac{p}{S}}$$
    - Speedup bounded by: 
$$\frac{1}{\text{fraction of time not enhanced}}$$
  - Time scales in computer systems can vary by millions
    - CPUs and memory operate in nanoseconds

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)
  - Amdahl's law:
    - $$Speedup(E) = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1-p) + \frac{p}{S}}$$
    - Speedup bounded by: 
$$\frac{1}{\text{fraction of time not enhanced}}$$
  - Time scales in computer systems can vary by millions
    - CPUs and memory operate in nanoseconds
    - Datacenter networks and SSDs operates in microseconds

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)
  - Amdahl's law:
    - $$Speedup(E) = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1-p) + \frac{p}{S}}$$
    - Speedup bounded by: 
$$\frac{1}{\text{fraction of time not enhanced}}$$
  - Time scales in computer systems can vary by millions
    - CPUs and memory operate in nanoseconds
    - Datacenter networks and SSDs operates in microseconds
    - Sending stuff over the Internet operates in milliseconds

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)
  - Amdahl's law:
    - $$Speedup(E) = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1-p) + \frac{p}{S}}$$
    - Speedup bounded by: 
$$\frac{1}{\text{fraction of time not enhanced}}$$
  - Time scales in computer systems can vary by millions
    - CPUs and memory operate in nanoseconds
    - Datacenter networks and SSDs operates in microseconds
    - Sending stuff over the Internet operates in milliseconds
- Intro to datacenters

---

## Lecture 1: summary

- Class is about **computer systems** for data science
  - Very little math or algorithms
  - Broad overview of computer systems and databases
- Performance concepts and rules of thumbs
  - Throughput and latency: two orthogonal metrics to evaluate computer systems (and pizzerias)
  - Amdahl's law:
$$\text{Speedup}(E) = \frac{\text{ExTime}_{\text{old}}}{\text{ExTime}_{\text{new}}} = \frac{1}{(1-p) + \frac{p}{S}}$$
  - Speedup bounded by: 
$$\frac{1}{\text{fraction of time not enhanced}}$$
  - Time scales in computer systems can vary by millions
    - CPUs and memory operate in nanoseconds
    - Datacenter networks and SSDs operate in microseconds
    - Sending stuff over the Internet operates in milliseconds
- Intro to datacenters
  - Modern datacenter design: standard hardware, replicated in racks (cabinets), rows, deployed in football stadium-sized warehouses

---

## Lecture 2: What are we covering today?

---

## Lecture 2: What are we covering today?

- Wrapping up data centers
  - Power/cooling
  - Networking
  - AI datacenters

---

## Lecture 2: What are we covering today?

- Wrapping up data centers
  - Power/cooling
  - Networking
  - AI datacenters
- Single table SQL
  - Relational model
  - Schemas
  - Data types
  - Limits
  - Basic queries

---

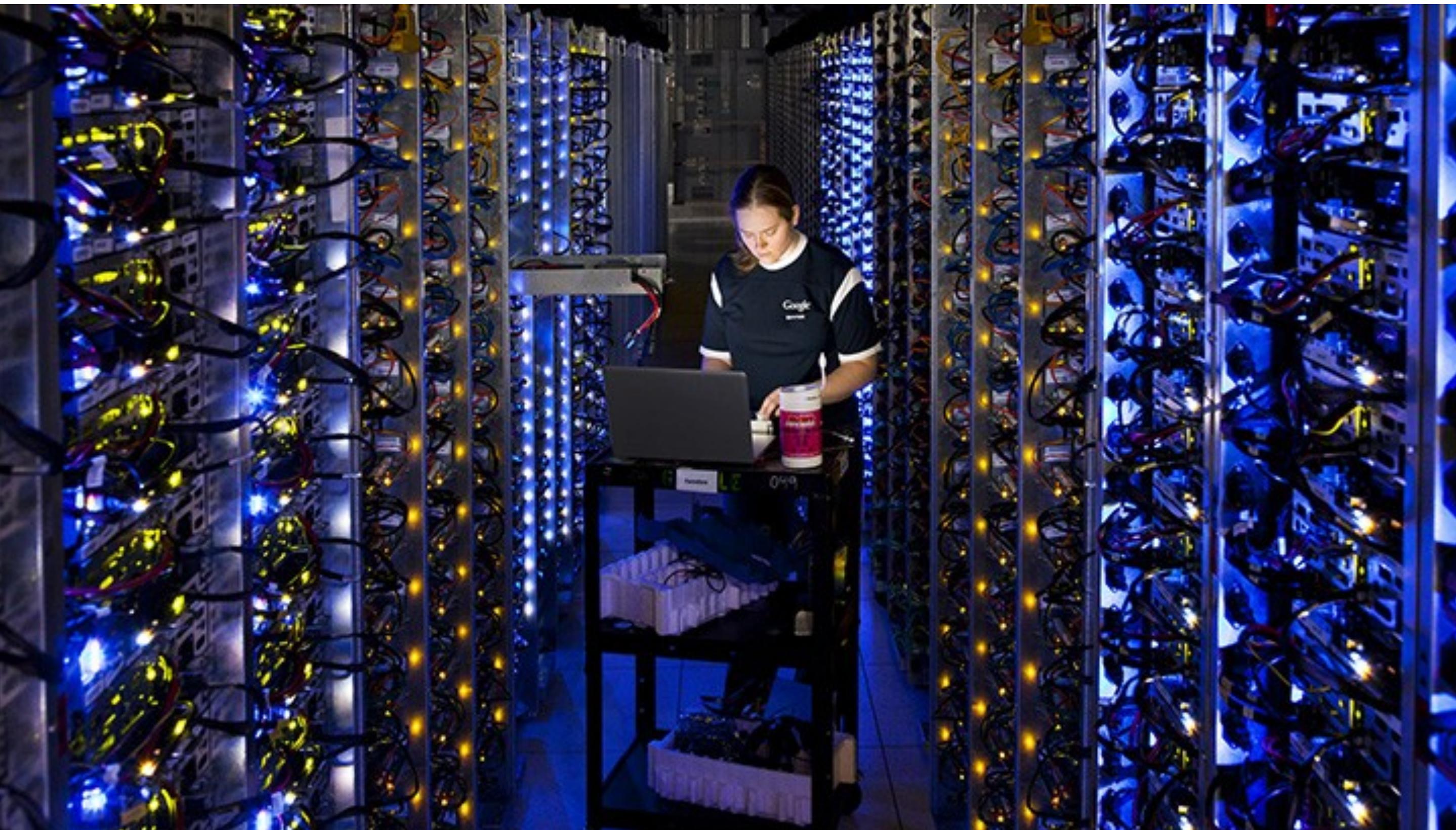
## Lecture 2: What are we covering today?

- Wrapping up data centers
  - Power/cooling
  - Networking
  - AI datacenters
- Single table SQL
  - Relational model
  - Schemas
  - Data types
  - Limits
  - Basic queries
- Schema evolution
  - API schema
  - Case studies [[1](#), [2](#)]

---

## Row/Cluster

- 30+ racks

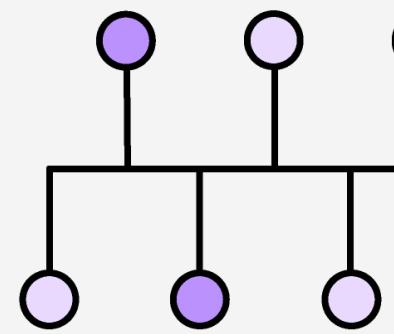


---

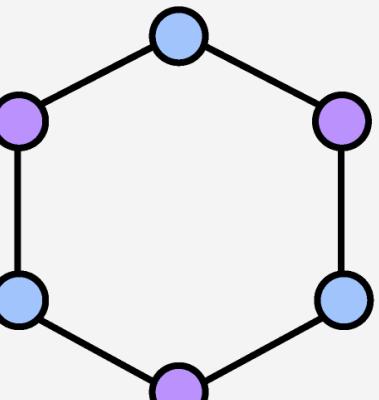
# Network Topology

# Network Topology

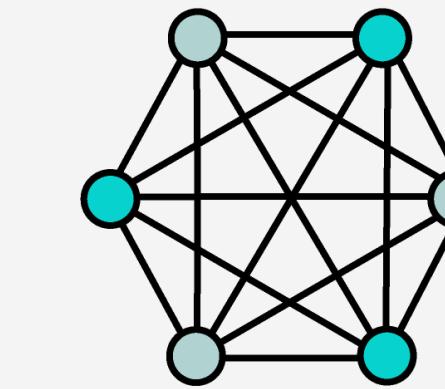
Bus



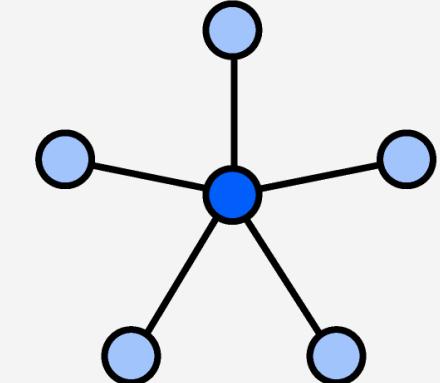
Ring



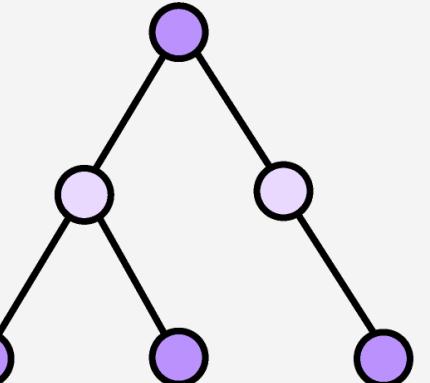
Mesh



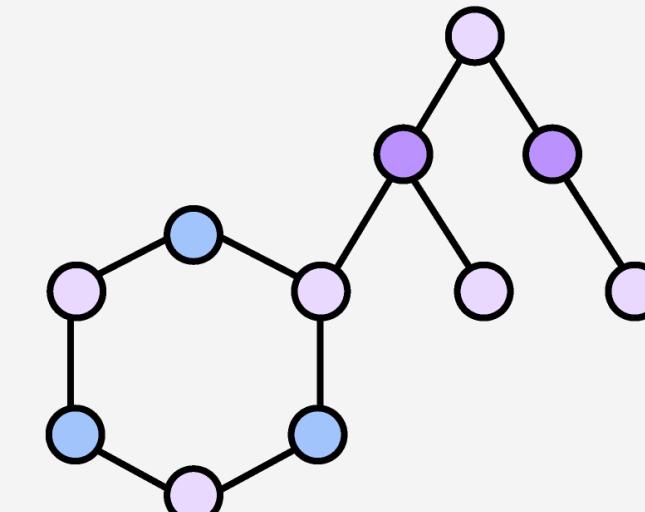
Star



Tree



Hybrid



---

## Networking - Switch locations

---

## Networking - Switch locations

- Top-of-rack switch
  - Connecting machines in rack
  - Multiple links going to end-of-row routers

---

## Networking - Switch locations

- Top-of-rack switch
  - Connecting machines in rack
  - Multiple links going to end-of-row routers

---

## Networking - Switch locations

- **Top-of-rack switch**
  - Connecting machines in rack
  - Multiple links going to end-of-row routers
- **End-of-row router**
  - Aggregate row of machines
  - Multiple links going to core routers

---

## Networking - Switch locations

- **Top-of-rack switch**
  - Connecting machines in rack
  - Multiple links going to end-of-row routers
- **End-of-row router**
  - Aggregate row of machines
  - Multiple links going to core routers

---

## Networking - Switch locations

- **Top-of-rack switch**
  - Connecting machines in rack
  - Multiple links going to end-of-row routers
- **End-of-row router**
  - Aggregate row of machines
  - Multiple links going to core routers
- **Core router**
  - Multiple core routers

---

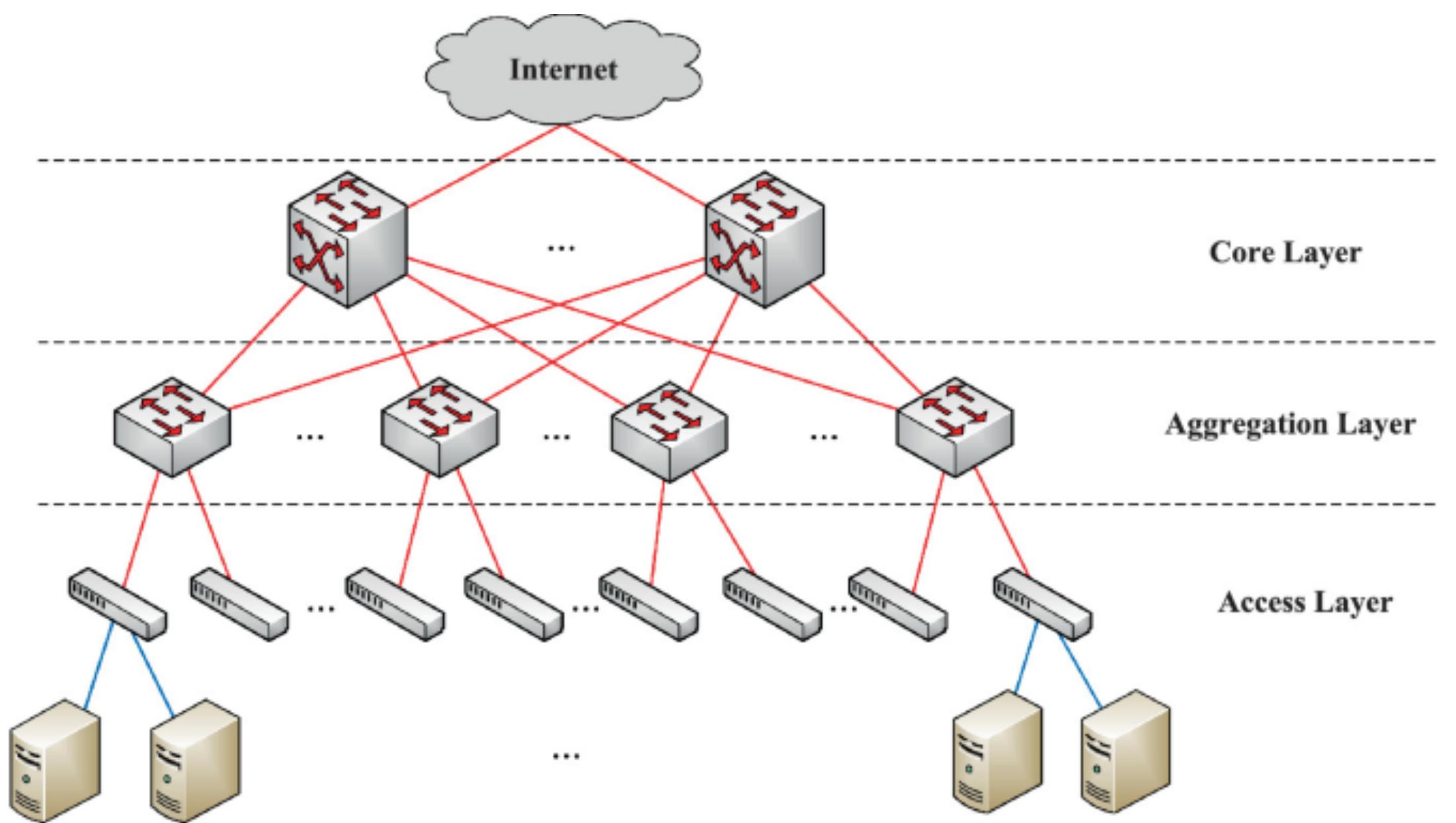
## Networking - Switch locations

- **Top-of-rack switch**
  - Connecting machines in rack
  - Multiple links going to end-of-row routers
- **End-of-row router**
  - Aggregate row of machines
  - Multiple links going to core routers
- **Core router**
  - Multiple core routers
- Each of these have different latencies, throughput
  - Higher in hierarchy -> higher throughput

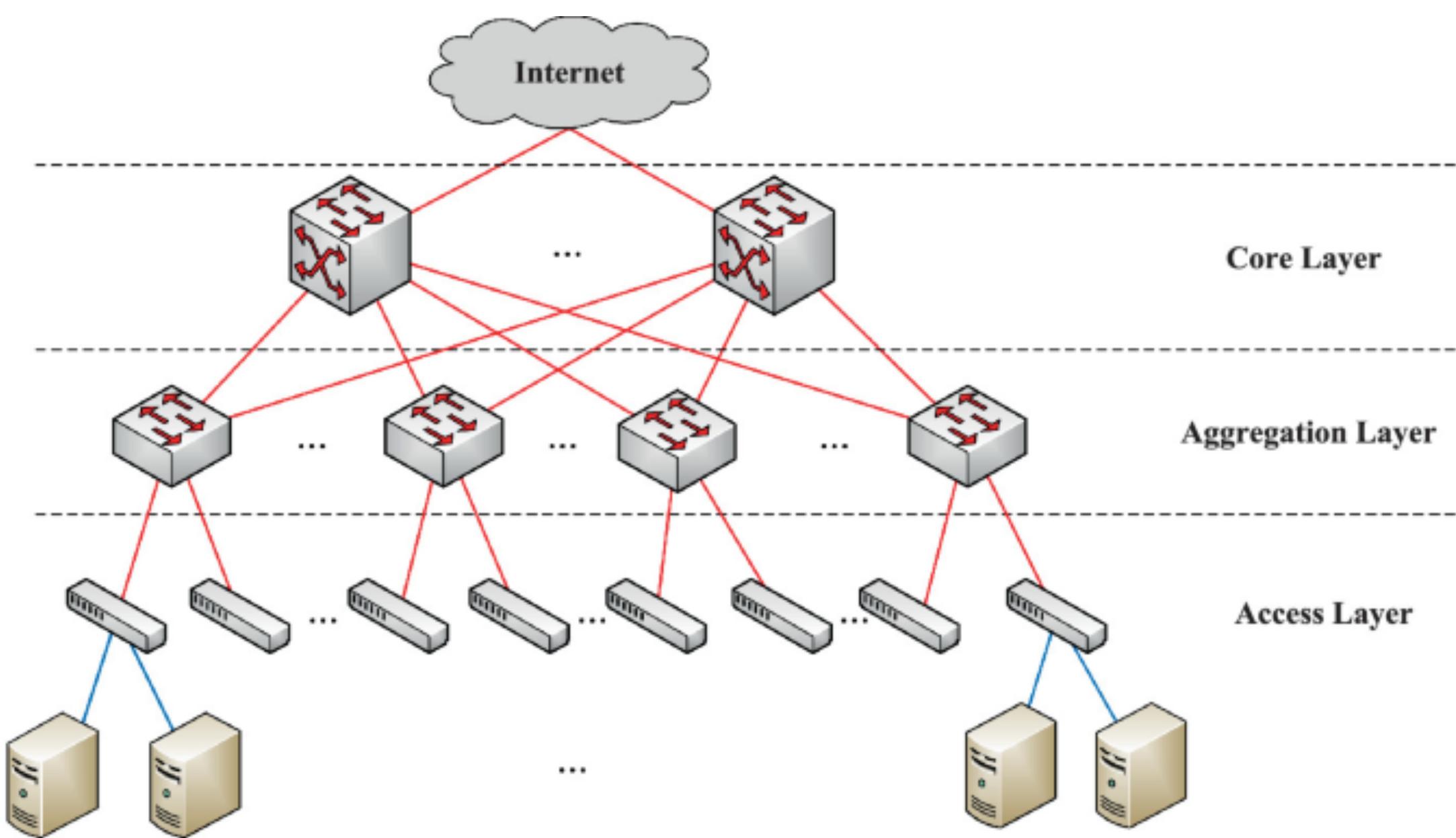
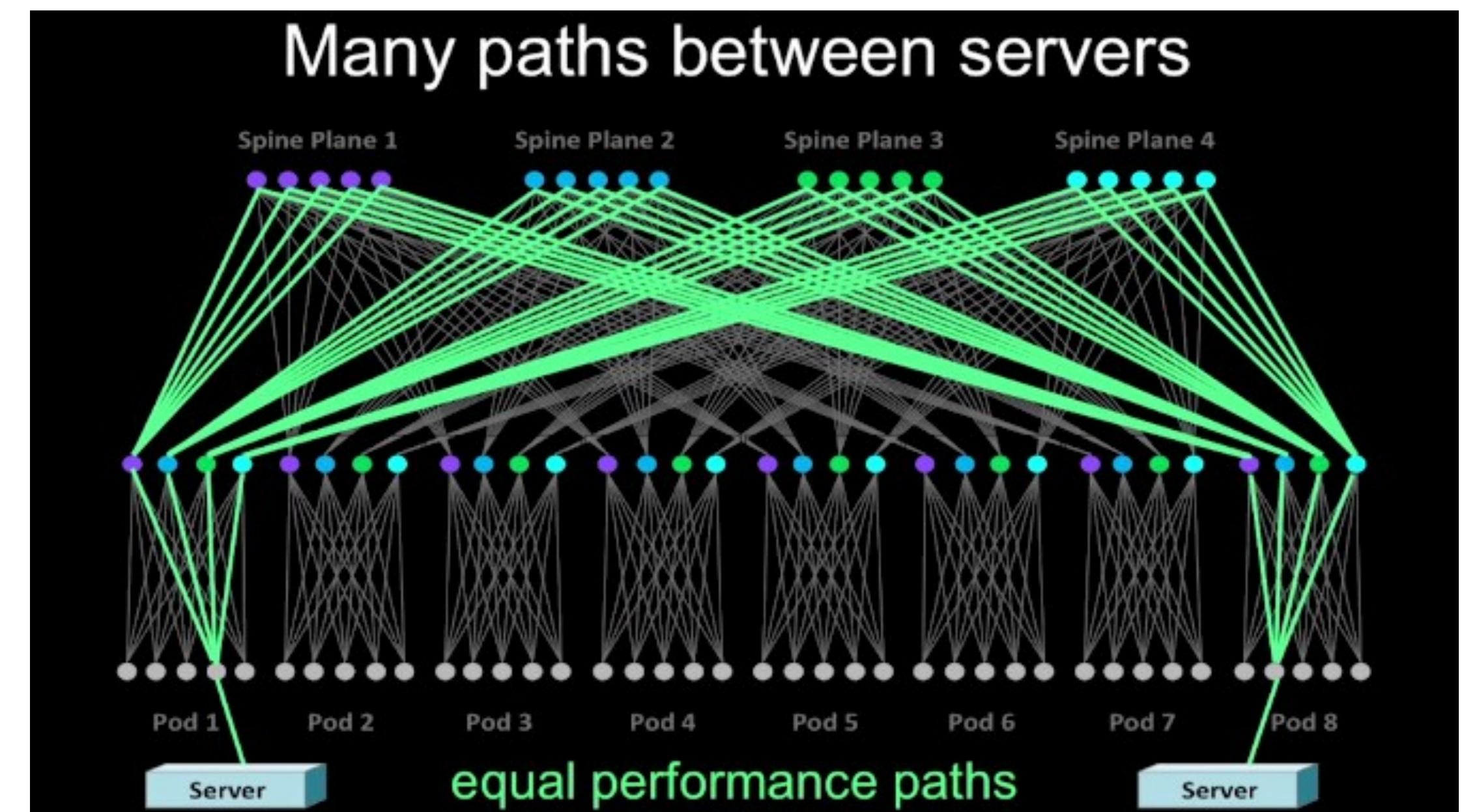
---

## Multipath routing

## Multipath routing



## Multipath routing



---

## Power Usage Effectiveness (PUE)

- Early data centers built with off-the-shelf components
  - Standard servers
  - HVAC unit designs from malls

$$\text{PUE ratio} = \frac{\text{Total Facility Power}}{\text{Server/Network Power}}$$

Inefficient: early data centers had PUE of 1.7-2.0

---

## Power Usage Effectiveness (PUE)

- Early data centers built with off-the-shelf components
  - Standard servers
  - HVAC unit designs from malls

$$\text{PUE ratio} = \frac{\text{Total Facility Power}}{\text{Server/Network Power}}$$

Inefficient: early data centers had PUE of 1.7-2.0

- Average PUE for AWS datacenters in 2024: 1.15 (only 15% from optimal!)

---

## Power Usage Effectiveness (PUE)

- Early data centers built with off-the-shelf components
  - Standard servers
  - HVAC unit designs from malls

$$\text{PUE ratio} = \frac{\text{Total Facility Power}}{\text{Server/Network Power}}$$

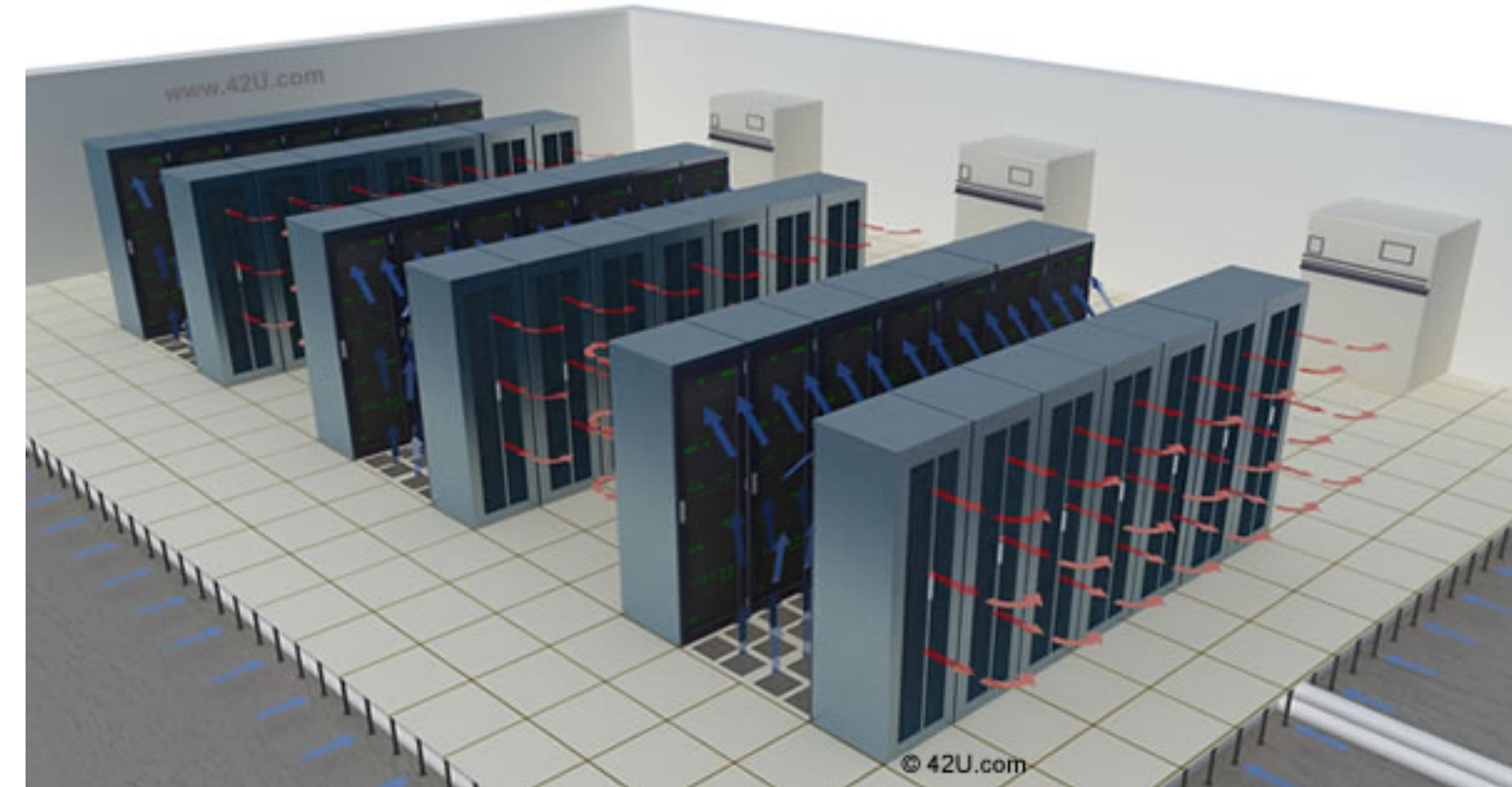
Inefficient: early data centers had PUE of 1.7-2.0

- Average PUE for AWS datacenters in 2024: 1.15 (only 15% from optimal!)
- Some can be 1.04
- Power is about 25% of monthly operating cost
  - And is (one of) the limiting factor in how large the datacenter can be

---

## Energy Efficient Data Centers

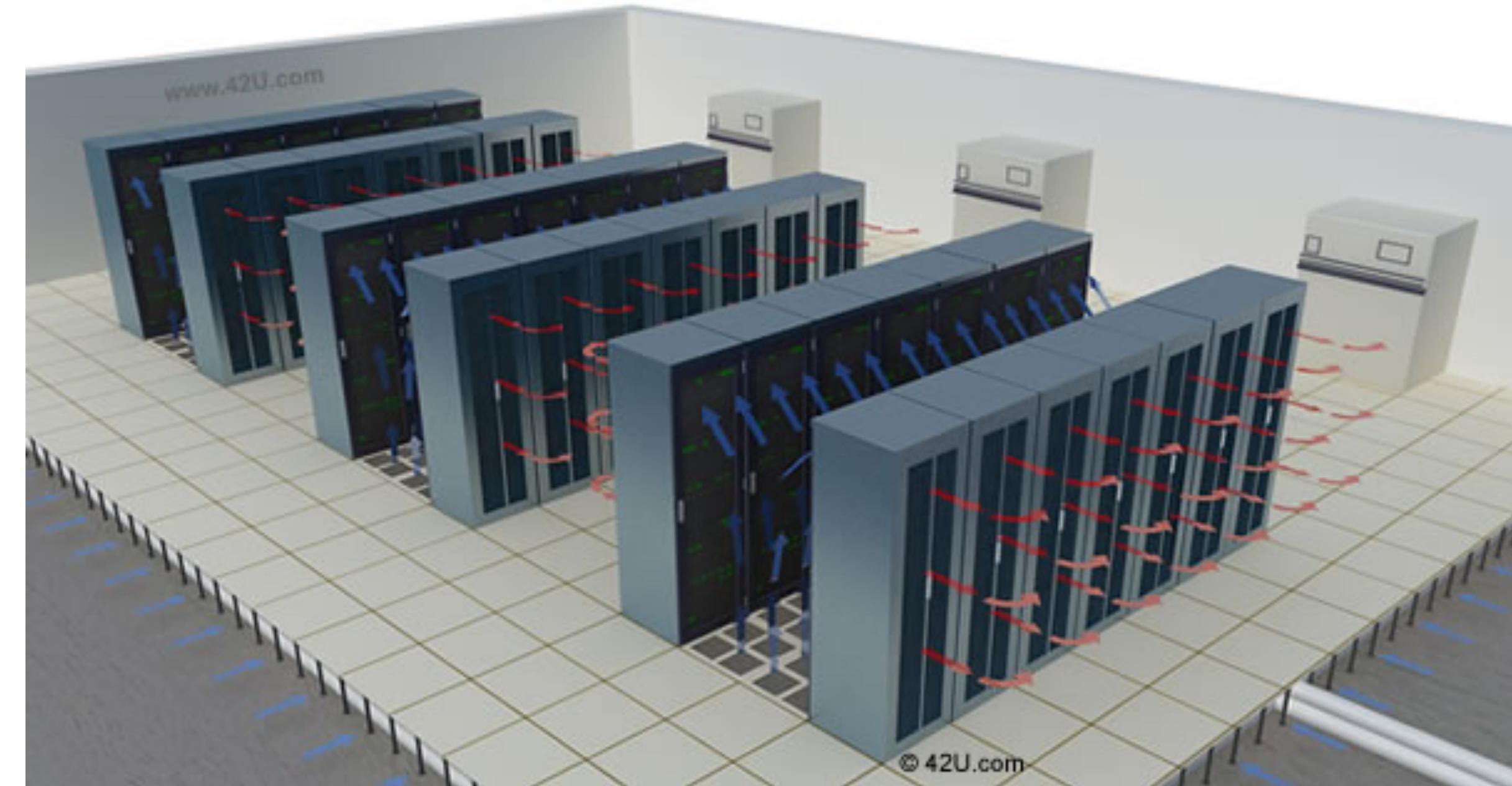
- Better power distribution - Fewer transformers



---

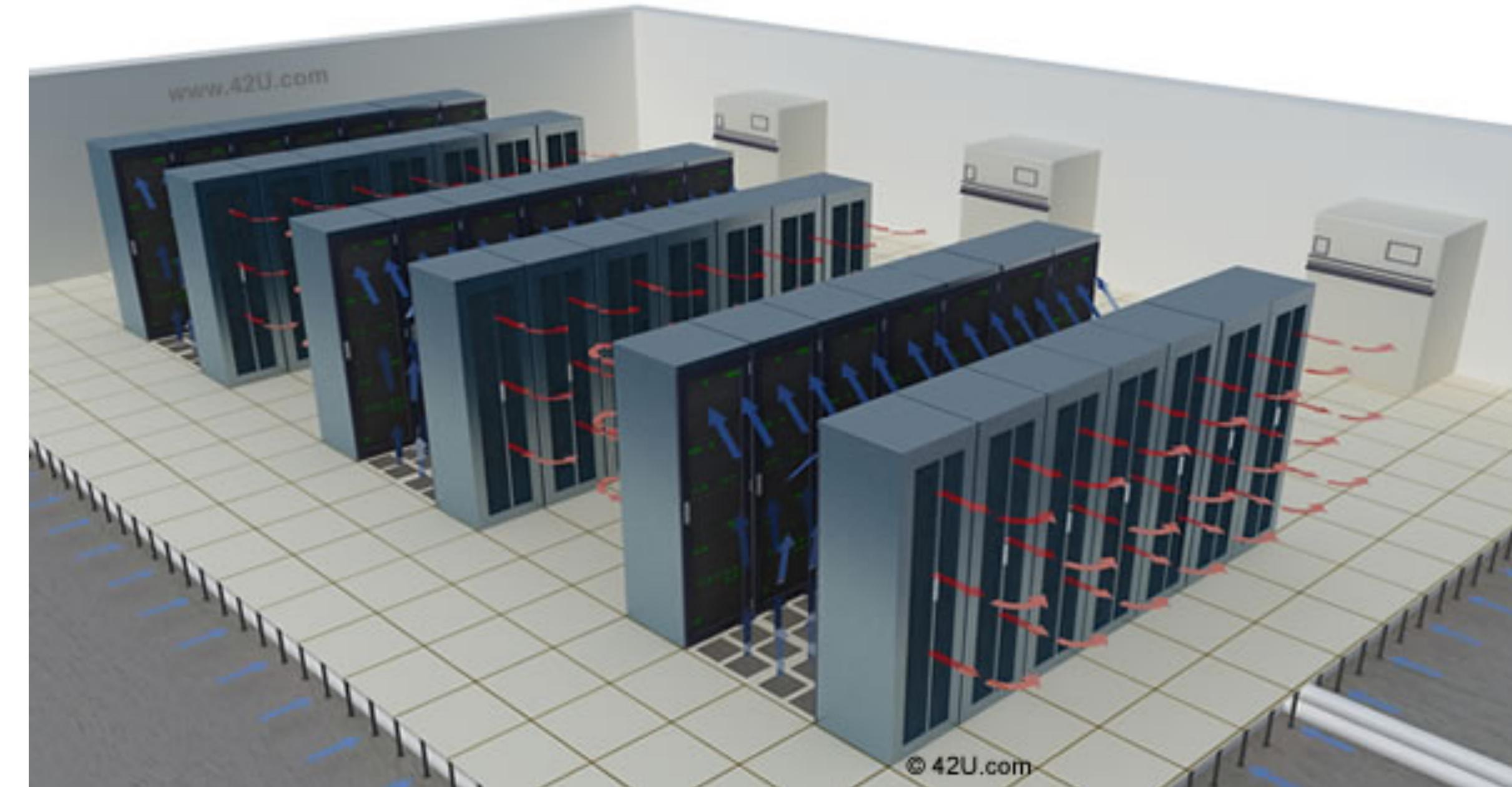
## Energy Efficient Data Centers

- Better power distribution - Fewer transformers
- Better cooling - use environment (air/water) rather than air conditioning
  - Bring in outside air
  - Evaporate some water



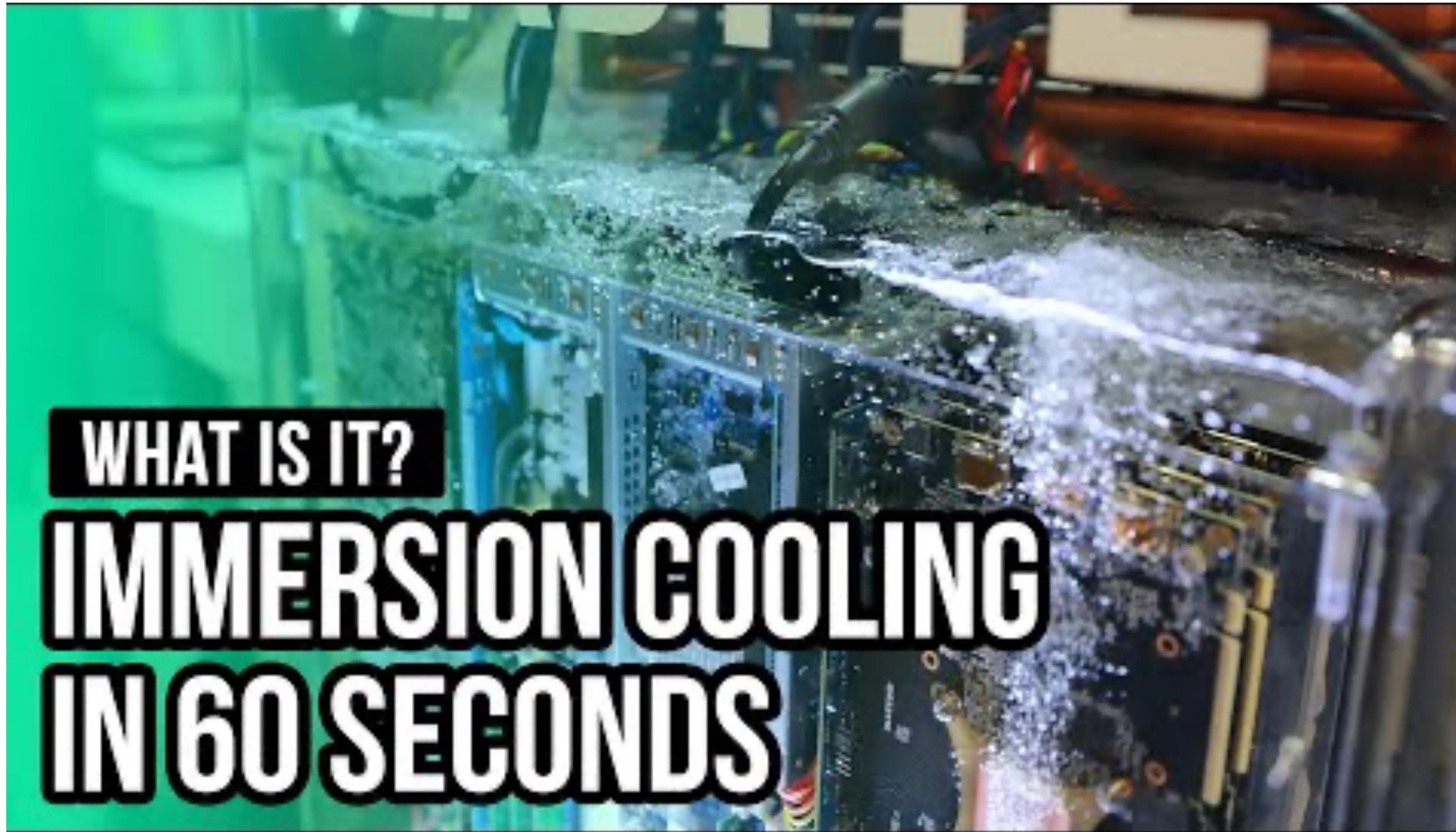
## Energy Efficient Data Centers

- Better power distribution - Fewer transformers
- Better cooling - use environment (air/water) rather than air conditioning
  - Bring in outside air
  - Evaporate some water
- IT Equipment range
  - OK up to +115°F



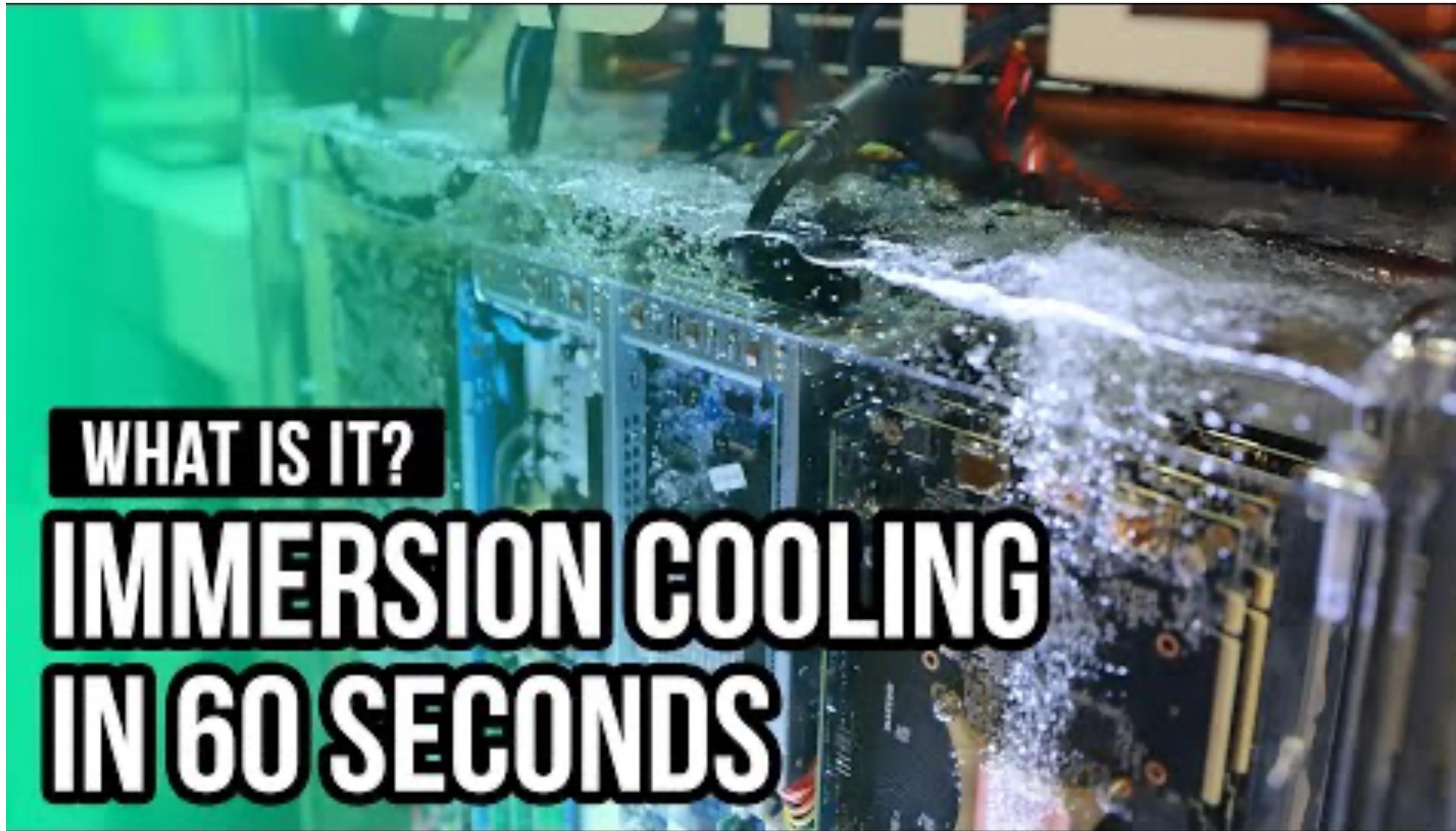
---

Liquid immersion is the “hottest” new technology for cooling data centers



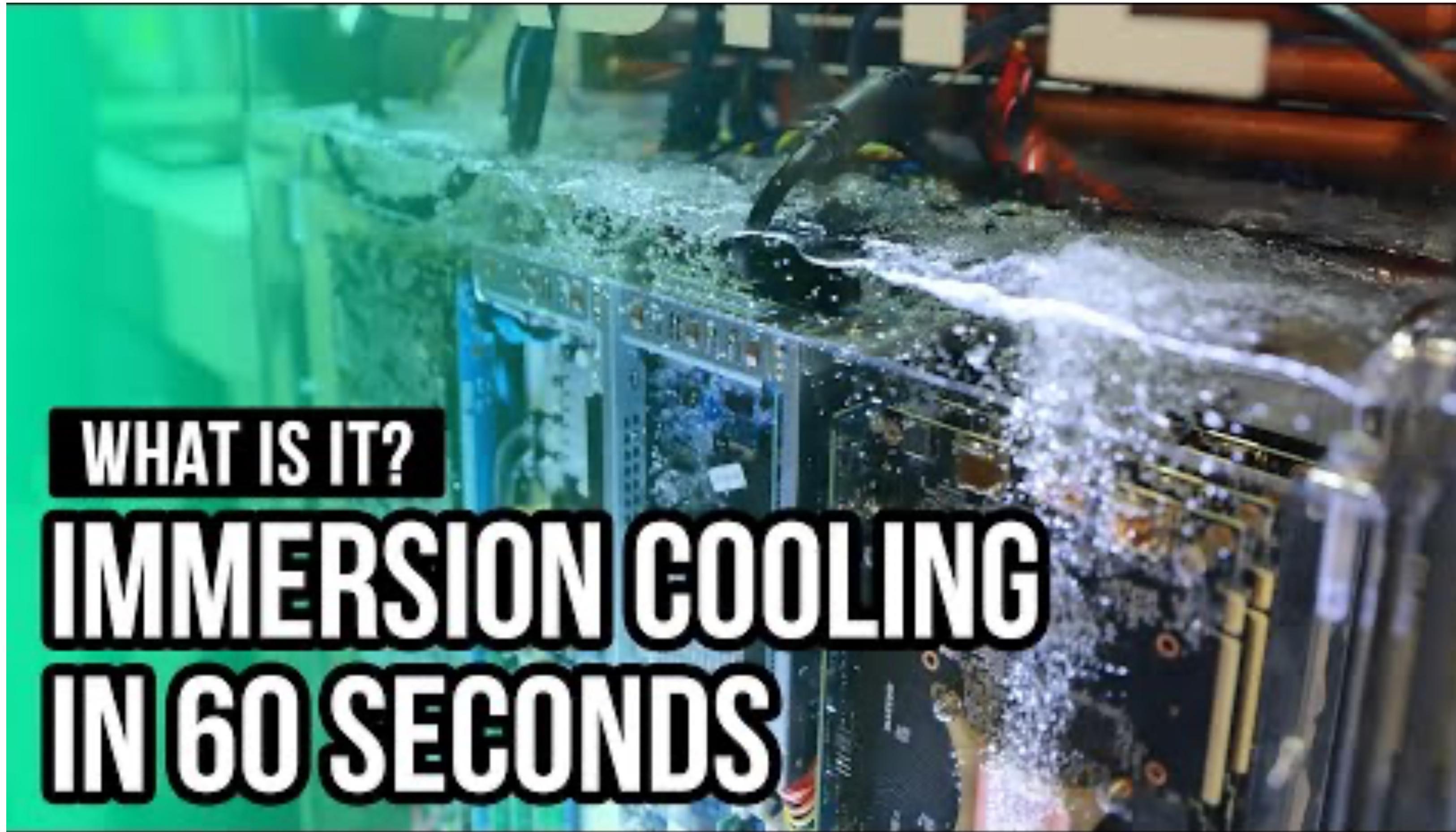
---

Liquid immersion is the “hottest” new technology for cooling data centers



---

Liquid immersion is the “hottest” new technology for cooling data centers



---

## Backup Power

---

## Backup Power

- Massive amount of batteries to tolerate short glitches in power

---

## Backup Power

- Massive amount of batteries to tolerate short glitches in power
  - Just need long enough for backup generators to startup

---

## Backup Power

- Massive amount of batteries to tolerate short glitches in power
  - Just need long enough for backup generators to startup
- How do glitches occur?

---

## Backup Power

- Massive amount of batteries to tolerate short glitches in power
  - Just need long enough for backup generators to startup
- How do glitches occur?
  - Thunder, earthquake, power loss from power company, cyber attack, ...

---

## Backup Power

- Massive amount of batteries to tolerate short glitches in power
  - Just need long enough for backup generators to startup
- How do glitches occur?
  - Thunder, earthquake, power loss from power company, cyber attack, ...
- Massive collections of backup generators

---

## Backup Power

- Massive amount of batteries to tolerate short glitches in power
  - Just need long enough for backup generators to startup
- How do glitches occur?
  - Thunder, earthquake, power loss from power company, cyber attack, ...
- Massive collections of backup generators
- Huge fuel tanks to provide fuel for the generators

---

## Backup Power

- Massive amount of batteries to tolerate short glitches in power
  - Just need long enough for backup generators to startup
- How do glitches occur?
  - Thunder, earthquake, power loss from power company, cyber attack, ...
- Massive collections of backup generators
- Huge fuel tanks to provide fuel for the generators
- Fuel replenishment transportation network (e.g. fuel trucks)

## Backup Power

- Massive amount of batteries to tolerate short glitches in power
  - Just need long enough for backup generators to startup
- How do glitches occur?
  - Thunder, earthquake, power
- Massive collections of backi
- Huge fuel tanks to provide f
- Fuel replenishment transpor

≡ **CNN** World Africa Americas Asia Australia China Europe More ▾

• Watch **Subscribe** Sign in

**START THE DAY HERE**

New details in fatal shooting of Alex Patti. Rep. Ilhan Omar attacked during town hall. Social media platforms on trial

X

WORLD > ASIA • 2 MIN READ

### Explosive battery blaze in South Korea ‘paralyzes’ vital government services

SEP 27, 2025 ▾

By Laura Sharman



---

## Energy sources

---

## Energy sources

- Increasingly, data centers powered by renewable energy

---

## Energy sources

- Increasingly, data centers powered by renewable energy
  - But, solar/wind are intermittent

---

## Energy sources

- Increasingly, data centers powered by renewable energy
  - But, solar/wind are intermittent
  - Hydro, nuclear are more reliable

---

## Energy sources

- Increasingly, data centers powered by renewable energy
  - But, solar/wind are intermittent
  - Hydro, nuclear are more reliable

---

## Energy sources

- Increasingly, data centers powered by renewable energy
  - But, solar/wind are intermittent
  - Hydro, nuclear are more reliable
- In practice, many new data centers powered by solar / wind but rely on fossil fuels from the electric grid when the wind isn't blowing / sun isn't shining

---

## Energy sources

- Increasingly, data centers powered by renewable energy
  - But, solar/wind are intermittent
  - Hydro, nuclear are more reliable
- In practice, many new data centers powered by solar / wind but rely on fossil fuels from the electric grid when the wind isn't blowing / sun isn't shining



---

## Fault Tolerance

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures
- Solution: Redundancy

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures
- Solution: Redundancy
  - Multiple independent copies of all data

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures
- Solution: Redundancy
  - Multiple independent copies of all data
  - Independent? Consistency :(

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures
- Solution: Redundancy
  - Multiple independent copies of all data
  - Independent? Consistency :(

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures
- Solution: Redundancy
  - Multiple independent copies of all data
  - Independent? Consistency :(
  - Multiple independent network connections

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures
- Solution: Redundancy
  - Multiple independent copies of all data
    - Independent? Consistency :(
  - Multiple independent network connections
    - Under utilized capacity

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures
- Solution: Redundancy
  - Multiple independent copies of all data
    - Independent? Consistency :(
  - Multiple independent network connections
    - Under utilized capacity

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures
- Solution: Redundancy
  - Multiple independent copies of all data
    - Independent? Consistency :(
    - Multiple independent network connections
      - Under utilized capacity
    - Multiple copies of every service

---

## Fault Tolerance

- At the scale of new data centers, things are breaking constantly
- Every aspect of the data center must be able to tolerate failures
- Solution: Redundancy
  - Multiple independent copies of all data
    - Independent? Consistency :(
  - Multiple independent network connections
    - Under utilized capacity
  - Multiple copies of every service
    - Releases, update cycles, resource use

---

## Failures in first year for a new data center (Jeff Dean)

~thousands of **hard drive failures**

---

## Failures in first year for a new data center (Jeff Dean)

- ~thousands of hard drive failures
- ~1000 individual machine failures

---

## Failures in first year for a new data center (Jeff Dean)

- ~thousands of **hard drive failures**
- ~1000 **individual machine failures**
- ~dozens of minor **30-second blips** for DNS

---

## Failures in first year for a new data center (Jeff Dean)

- ~thousands of **hard drive failures**
- ~1000 **individual machine failures**
- ~dozens of minor **30-second blips** for DNS

It's always DNS (unless it's BGP)

---

## Failures in first year for a new data center (Jeff Dean)

~thousands of **hard drive failures**

~1000 **individual machine failures**

~dozens of minor **30-second blips** for DNS

It's always DNS (unless it's BGP)

~3 **router failures** (have to immediately pull traffic for an hour)

---

## Failures in first year for a new data center (Jeff Dean)

~thousands of **hard drive failures**

~1000 **individual machine failures**

~dozens of minor **30-second blips** for DNS

    It's always DNS (unless it's BGP)

~3 **router failures** (have to immediately pull traffic for an hour)

~12 **router reloads** (takes out DNS and external VIPs for a couple minutes)

---

## Failures in first year for a new data center (Jeff Dean)

~thousands of **hard drive failures**

~1000 **individual machine failures**

~dozens of minor **30-second blips** for DNS

It's always DNS (unless it's BGP)

~3 **router failures** (have to immediately pull traffic for an hour)

~12 **router reloads** (takes out DNS and external VIPs for a couple minutes)

~8 **network maintenances** (might cause ~30-minute random connectivity losses)

---

## Failures in first year for a new data center (Jeff Dean)

~thousands of **hard drive failures**

~1000 **individual machine failures**

~dozens of minor **30-second blips** for DNS

    It's always DNS (unless it's BGP)

~3 **router failures** (have to immediately pull traffic for an hour)

~12 **router reloads** (takes out DNS and external VIPs for a couple minutes)

~8 **network maintenances** (might cause ~30-minute random connectivity losses)

~5 **racks go wonky** (40-80 machines see 50% packet loss)

---

## Failures in first year for a new data center (Jeff Dean)

~thousands of **hard drive failures**

~1000 **individual machine failures**

~dozens of minor **30-second blips** for DNS

    It's always DNS (unless it's BGP)

~3 **router failures** (have to immediately pull traffic for an hour)

~12 **router reloads** (takes out DNS and external VIPs for a couple minutes)

~8 **network maintenances** (might cause ~30-minute random connectivity losses)

~5 **racks go wonky** (40-80 machines see 50% packet loss)

~20 **rack failures** (40-80 machines instantly disappear, 1-6 hours to get back)

---

## Failures in first year for a new data center (Jeff Dean)

- ~thousands of **hard drive failures**
- ~1000 **individual machine failures**
- ~dozens of minor **30-second blips** for DNS
  - It's always DNS (unless it's BGP)
- ~3 **router failures** (have to immediately pull traffic for an hour)
- ~12 **router reloads** (takes out DNS and external VIPs for a couple minutes)
- ~8 **network maintenances** (might cause ~30-minute random connectivity losses)
- ~5 **racks go wonky** (40-80 machines see 50% packet loss)
- ~20 **rack failures** (40-80 machines instantly disappear, 1-6 hours to get back)
- ~1 **network rewiring** (rolling ~5% of machines down over 2-day span)

---

## Failures in first year for a new data center (Jeff Dean)

~thousands of **hard drive failures**

~1000 **individual machine failures**

~dozens of minor **30-second blips** for DNS

It's always DNS (unless it's BGP)

~3 **router failures** (have to immediately pull traffic for an hour)

~12 **router reloads** (takes out DNS and external VIPs for a couple minutes)

~8 **network maintenances** (might cause ~30-minute random connectivity losses)

~5 **racks go wonky** (40-80 machines see 50% packet loss)

~20 **rack failures** (40-80 machines instantly disappear, 1-6 hours to get back)

~1 **network rewiring** (rolling ~5% of machines down over 2-day span)

~1 **rack-move** (plenty of warning, ~500-1000 machines powered down, ~6 hours)

---

## Failures in first year for a new data center (Jeff Dean)

- ~thousands of **hard drive failures**
- ~1000 **individual machine failures**
- ~dozens of minor **30-second blips** for DNS
  - It's always DNS (unless it's BGP)
- ~3 **router failures** (have to immediately pull traffic for an hour)
- ~12 **router reloads** (takes out DNS and external VIPs for a couple minutes)
- ~8 **network maintenances** (might cause ~30-minute random connectivity losses)
- ~5 **racks go wonky** (40-80 machines see 50% packet loss)
- ~20 **rack failures** (40-80 machines instantly disappear, 1-6 hours to get back)
- ~1 **network rewiring** (rolling ~5% of machines down over 2-day span)
- ~1 **rack-move** (plenty of warning, ~500-1000 machines powered down, ~6 hours)
- ~1 **PDU failure** (~500-1000 machines suddenly disappear, ~6 hours to come back)
- ~0.5 **overheating** (power down most machines in <5 mins, ~1-2 days to recover)

---

## Failures in first year for a new data center (Jeff Dean)

- ~thousands of **hard drive failures**
- ~1000 **individual machine failures**
- ~dozens of minor **30-second blips** for DNS
  - It's always DNS (unless it's BGP)
- ~3 **router failures** (have to immediately pull traffic for an hour)
- ~12 **router reloads** (takes out DNS and external VIPs for a couple minutes)
- ~8 **network maintenances** (might cause ~30-minute random connectivity losses)
- ~5 **racks go wonky** (40-80 machines see 50% packet loss)
- ~20 **rack failures** (40-80 machines instantly disappear, 1-6 hours to get back)
- ~1 **network rewiring** (rolling ~5% of machines down over 2-day span)
- ~1 **rack-move** (plenty of warning, ~500-1000 machines powered down, ~6 hours)
- ~1 **PDU failure** (~500-1000 machines suddenly disappear, ~6 hours to come back)
- ~0.5 **overheating** (power down most machines in <5 mins, ~1-2 days to recover)

---

## Failures in first year for a new data center (Jeff Dean)

- ~thousands of **hard drive failures**
- ~1000 **individual machine failures**
- ~dozens of minor **30-second blips** for DNS
  - It's always DNS (unless it's BGP)
- ~3 **router failures** (have to immediately pull traffic for an hour)
- ~12 **router reloads** (takes out DNS and external VIPs for a couple minutes)
- ~8 **network maintenances** (might cause ~30-minute random connectivity losses)
- ~5 **racks go wonky** (40-80 machines see 50% packet loss)
- ~20 **rack failures** (40-80 machines instantly disappear, 1-6 hours to get back)
- ~1 **network rewiring** (rolling ~5% of machines down over 2-day span)
- ~1 **rack-move** (plenty of warning, ~500-1000 machines powered down, ~6 hours)
- ~1 **PDU failure** (~500-1000 machines suddenly disappear, ~6 hours to come back)
- ~0.5 **overheating** (power down most machines in <5 mins, ~1-2 days to recover)

→ **Reliability must come from software!**

## Failures in first year for a new data center (Jeff Dean)

- ~thousands of **hard drive failures**
- ~1000 **individual machine failures**
- ~dozens of minor **30-second blips** for DNS
- It's always DNS (unless it's B)
- ~3 **router failures** (have to immediately reload)
- ~12 **router reloads** (takes out DNS and network)
- ~8 **network maintenances** (might cause 10-20 minutes of downtime)
- ~5 **racks go wonky** (40-80 machines)
- ~20 **rack failures** (40-80 machines irrecoverable)
- ~1 **network rewiring** (rolling ~5% of racks)
- ~1 **rack-move** (plenty of warning, ~5 days)
- ~1 **PDU failure** (~500-1000 machine failures)
- ~0.5 **overheating** (power down most racks)

→ **Reliability must come from design**

## Cloudflare 1.1.1.1 incident on July 14, 2025

2025-07-15



Ash Pallarito



Joe Abley

8 min read



On 14 July 2025, Cloudflare made a change to our service topologies that caused an outage for 1.1.1.1 on the edge, resulting in downtime for 62 minutes for customers using the 1.1.1.1 public DNS Resolver as well as intermittent degradation of service for Gateway DNS.

## Failures in first year for a new data center (Jeff Dean)

- ~thousands of **hard drive failures**
- ~1000 **individual machine failures**
- ~dozens of minor **30-second blips** fo  
It's always DNS (unless it's B)
- ~3 **router failures** (have to immediate
- ~12 **router reloads** (takes out DNS a
- ~8 **network maintenances** (migh Cloudflare has apologised after an outage on Friday morning hit websites
- ~5 **racks go wonky** (40-80 mach including LinkedIn, Zoom and Downdetector, the company's **second outage**
- ~20 **rack failures** (40-80 machine **in less than a month.**
- ~1 **network rewiring** (rolling ~5% of r
- ~1 **rack-move** (plenty of warning, ~5
- ~1 **PDU failure** (~500-1000 machine
- ~0.5 **overheating** (power down most

→ **Reliability must come from**

## Cloudflare 1.1.1.1 incident on July 14, 2025

2025-07-15

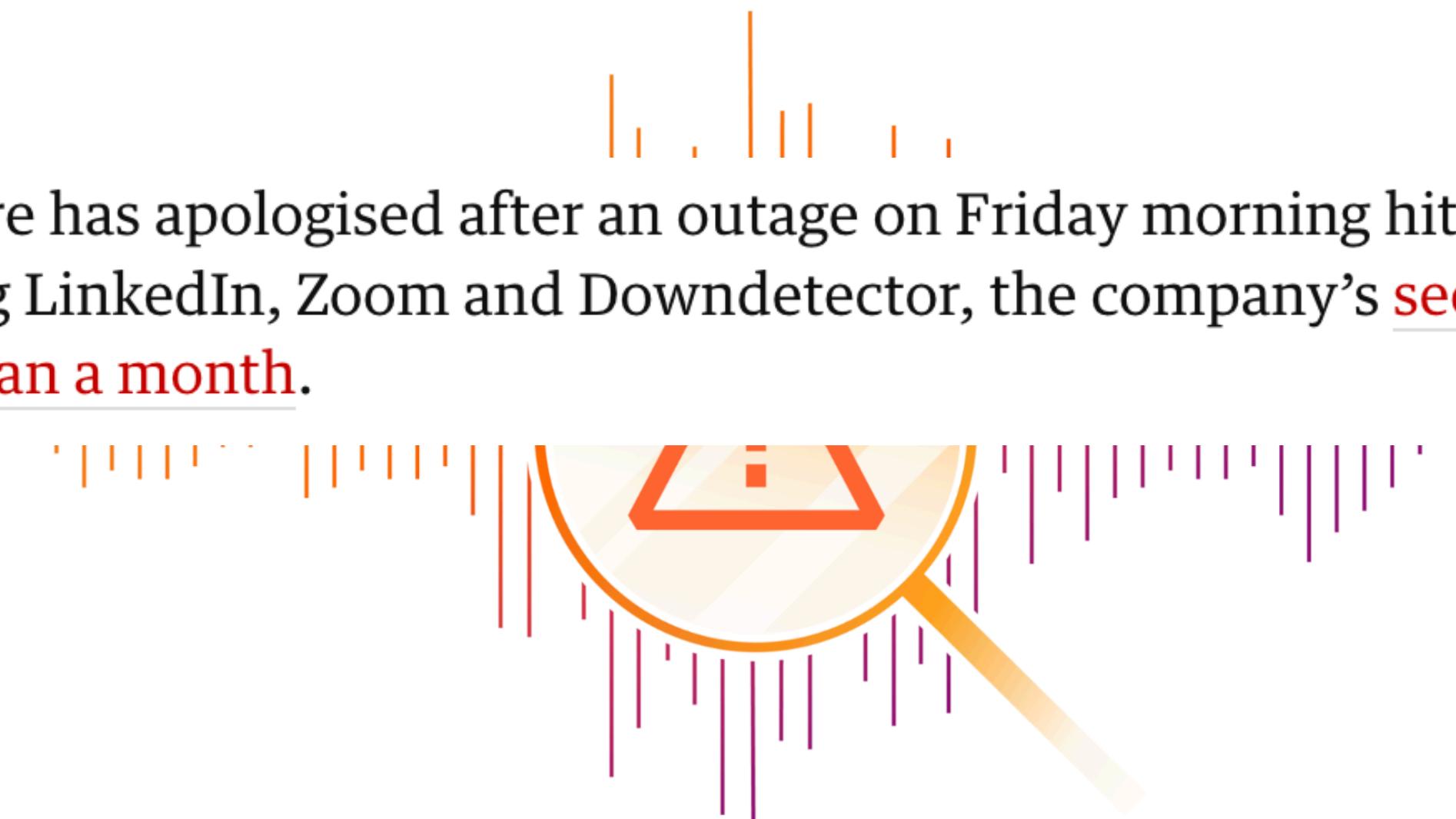


Ash Pallarito



Joe Abley

8 min read



On 14 July 2025, Cloudflare made a change to our service topologies that caused an outage for 1.1.1.1 on the edge, resulting in downtime for 62 minutes for customers using the 1.1.1.1 public DNS Resolver as well as intermittent degradation of service for Gateway DNS.

---

## Comparing AI datacenters to traditional ones

---

## Comparing AI datacenters to traditional ones

- Similarities

---

## Comparing AI datacenters to traditional ones

- **Similarities**
  - Same rack/row topology

---

## Comparing AI datacenters to traditional ones

- **Similarities**
  - Same rack/row topology
  - Cooling still a big problem (e.g., GPU immersible cooling is coming soon)

---

## Comparing AI datacenters to traditional ones

- **Similarities**
  - Same rack/row topology
  - Cooling still a big problem (e.g., GPU immersible cooling is coming soon)

---

## Comparing AI datacenters to traditional ones

- **Similarities**
  - Same rack/row topology
  - Cooling still a big problem (e.g., GPU immersible cooling is coming soon)
- **Differences**

---

## Comparing AI datacenters to traditional ones

- **Similarities**
  - Same rack/row topology
  - Cooling still a big problem (e.g., GPU immersible cooling is coming soon)
- **Differences**
  - Compute: Thousands of GPUs, small ratio of CPU/GPU

---

## Comparing AI datacenters to traditional ones

- **Similarities**
  - Same rack/row topology
  - Cooling still a big problem (e.g., GPU immersible cooling is coming soon)
- **Differences**
  - Compute: Thousands of GPUs, small ratio of CPU/GPU
  - Memory: Don't need as much traditional CPU memory, require lots of on-GPU High Bandwidth Memory (HBM), which is much more expensive

---

## Comparing AI datacenters to traditional ones

- **Similarities**
  - Same rack/row topology
  - Cooling still a big problem (e.g., GPU immersible cooling is coming soon)
- **Differences**
  - Compute: Thousands of GPUs, small ratio of CPU/GPU
  - Memory: Don't need as much traditional CPU memory, require lots of on-GPU High Bandwidth Memory (HBM), which is much more expensive
  - Network: AI training has much more demanding networking requirements. Requires dedicated high-bandwidth networking both within a server (e.g., NVIDIA's NVLINK) and across servers (e.g., Infiniband)

---

## Comparing AI datacenters to traditional ones

- **Similarities**
  - Same rack/row topology
  - Cooling still a big problem (e.g., GPU immersible cooling is coming soon)
- **Differences**
  - Compute: Thousands of GPUs, small ratio of CPU/GPU
  - Memory: Don't need as much traditional CPU memory, require lots of on-GPU High Bandwidth Memory (HBM), which is much more expensive
  - Network: AI training has much more demanding networking requirements. Requires dedicated high-bandwidth networking both within a server (e.g., NVIDIA's NVLINK) and across servers (e.g., Infiniband)

---

## Comparing AI datacenters to traditional ones

- **Similarities**
  - Same rack/row topology
  - Cooling still a big problem (e.g., GPU immersible cooling is coming soon)
- **Differences**
  - Compute: Thousands of GPUs, small ratio of CPU/GPU
  - Memory: Don't need as much traditional CPU memory, require lots of on-GPU High Bandwidth Memory (HBM), which is much more expensive
  - Network: AI training has much more demanding networking requirements. Requires dedicated high-bandwidth networking both within a server (e.g., NVIDIA's NVLINK) and across servers (e.g., Infiniband)
- We will cover these topics more deeply in the second half of the class

---

Where should you build your datacenter?

---

## Where should you build your datacenter?

- Plentiful, inexpensive electricity
  - Examples - Oregon: Hydroelectric; Iowa: Wind
  - Increasingly: nuclear, thermal

---

## Where should you build your datacenter?

- Plentiful, inexpensive electricity
  - Examples - Oregon: Hydroelectric; Iowa: Wind
  - Increasingly: nuclear, thermal
- Good network connections
  - Access to the Internet backbone

---

## Where should you build your datacenter?

- Plentiful, inexpensive electricity
  - Examples - Oregon: Hydroelectric; Iowa: Wind
  - Increasingly: nuclear, thermal
- Good network connections
  - Access to the Internet backbone
- Inexpensive land

---

## Where should you build your datacenter?

- Plentiful, inexpensive electricity
  - Examples - Oregon: Hydroelectric; Iowa: Wind
  - Increasingly: nuclear, thermal
- Good network connections
  - Access to the Internet backbone
- Inexpensive land
- Geographically near users
  - Speed of light latency
  - Country laws (e.g. Our citizen's data must be kept in our county.)

---

## Where should you build your datacenter?

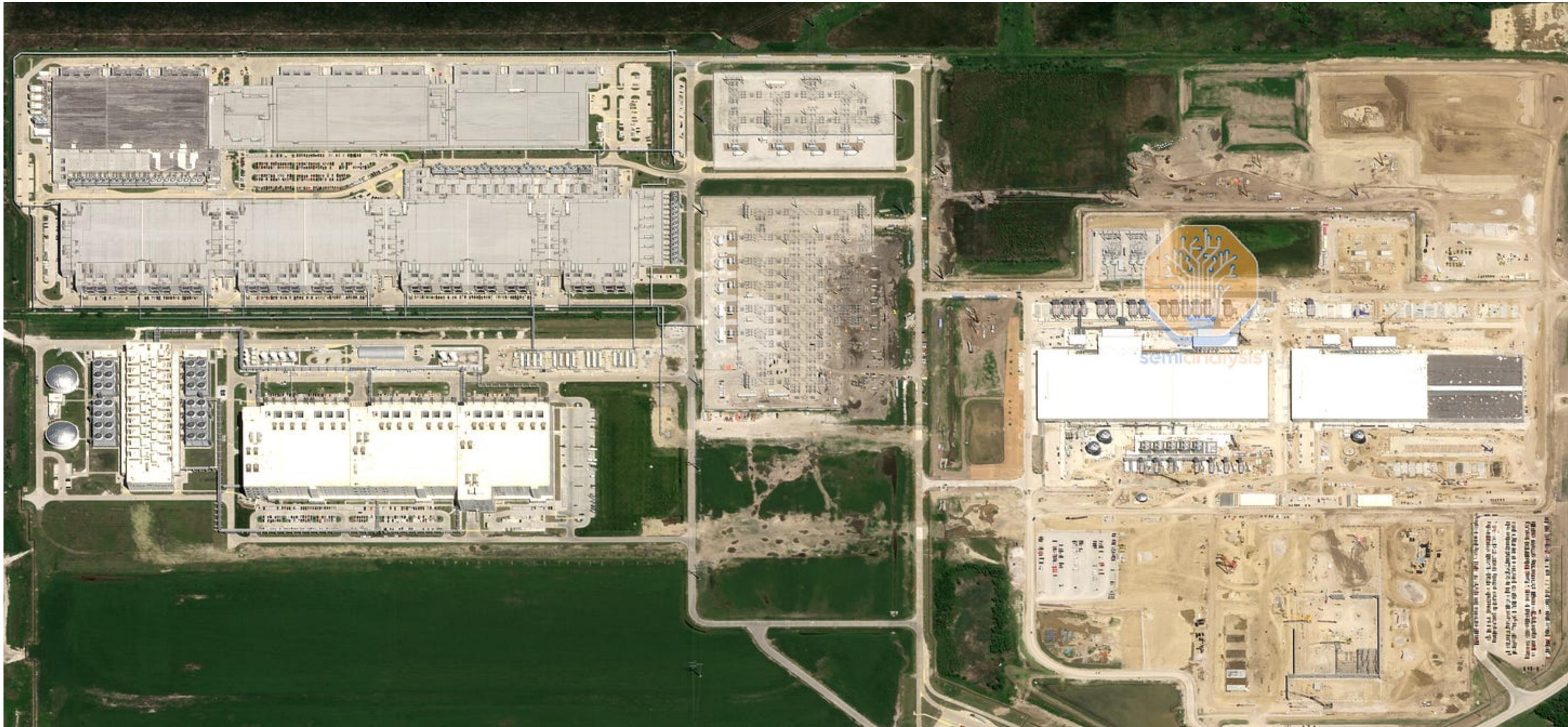
- Plentiful, inexpensive electricity
  - Examples - Oregon: Hydroelectric; Iowa: Wind
  - Increasingly: nuclear, thermal
- Good network connections
  - Access to the Internet backbone
- Inexpensive land
- Geographically near users
  - Speed of light latency
  - Country laws (e.g. Our citizen's data must be kept in our county.)
- Available labor pool

---

## Where should you build your datacenter?

- Plentiful, inexpensive electricity
  - Examples - Oregon: Hydroelectric; Iowa: Wind
  - Increasingly: nuclear, thermal
- Good network connections
  - Access to the Internet backbone
- Inexpensive land
- Geographically near users
  - Speed of light latency
  - Country laws (e.g. Our citizen's data must be kept in our county.)
- Available labor pool
- Politics
  - Crime and corruption
  - Tax breaks
  - AI regulations

# Google Data Center - Council Bluffs, Iowa, USA



Source: semianalysis

---

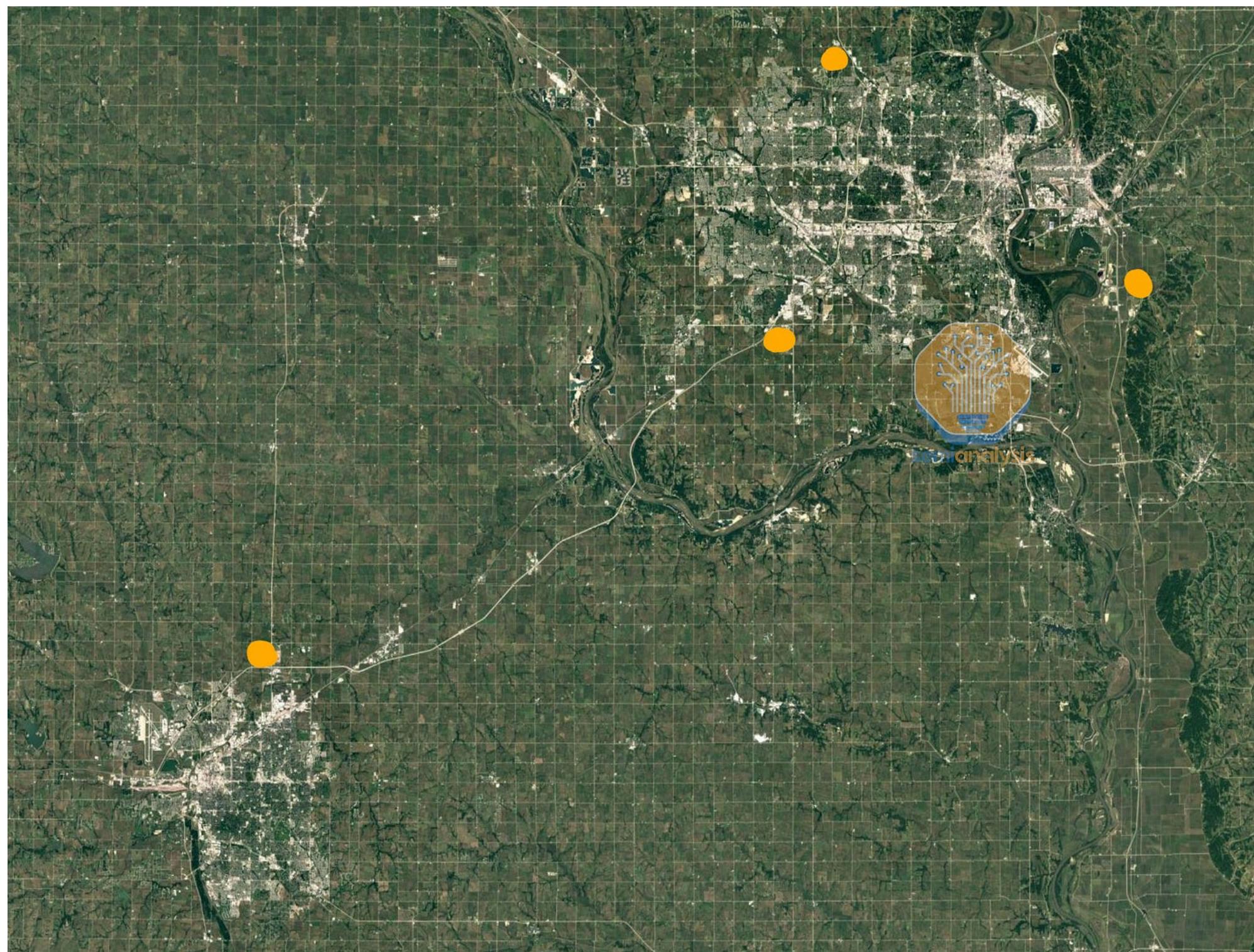
## Google data center pictures: Council Bluffs



---

## Datacenter “megasites”

- Four Google datacenter sites within a 50-mile radius of each other, in the Iowa/Nebraska region
- May reach GW of total power consumption



Source: semianalysis

---

## General application guidance

---

## General application guidance

- A “responsible” data center tenant

---

## General application guidance

- A “responsible” data center tenant
  - Organizes jobs and tasks into tiers

---

## General application guidance

- A “responsible” data center tenant
  - Organizes jobs and tasks into tiers
  - Localizes and collocates

---

## General application guidance

- A “responsible” data center tenant
  - Organizes jobs and tasks into tiers
  - Localizes and collocates
  - Minimizes bandwidth usage

---

## General application guidance

- A “responsible” data center tenant
  - Organizes jobs and tasks into tiers
  - Localizes and collocates
  - Minimizes bandwidth usage
  - Uses the right models (pubsub, RPCs, batch workflows)

---

## General application guidance

- A “responsible” data center tenant
  - Organizes jobs and tasks into tiers
  - Localizes and collocates
  - Minimizes bandwidth usage
  - Uses the right models (pubsub, RPCs, batch workflows)
  - Respects quotas

---

## General application guidance

- A “responsible” data center tenant
  - Organizes jobs and tasks into tiers
  - Localizes and collocates
  - Minimizes bandwidth usage
  - Uses the right models (pubsub, RPCs, batch workflows)
  - Respects quotas
  - Provides telemetry for observation and adjustment

---

## Summary

---

## Summary

- It's easy as data scientists (or software engineers) to lose sight that our code actually runs somewhere **physically**

---

## Summary

- It's easy as data scientists (or software engineers) to lose sight that our code actually runs somewhere **physically**
- The cloud is not some abstract concept: these are huge physical sites consuming power equivalent to entire cities

---

## Summary

- It's easy as data scientists (or software engineers) to lose sight that our code actually runs somewhere **physically**
- The cloud is not some abstract concept: these are huge physical sites consuming power equivalent to entire cities
- AI is accelerating the construction of new data centers

---

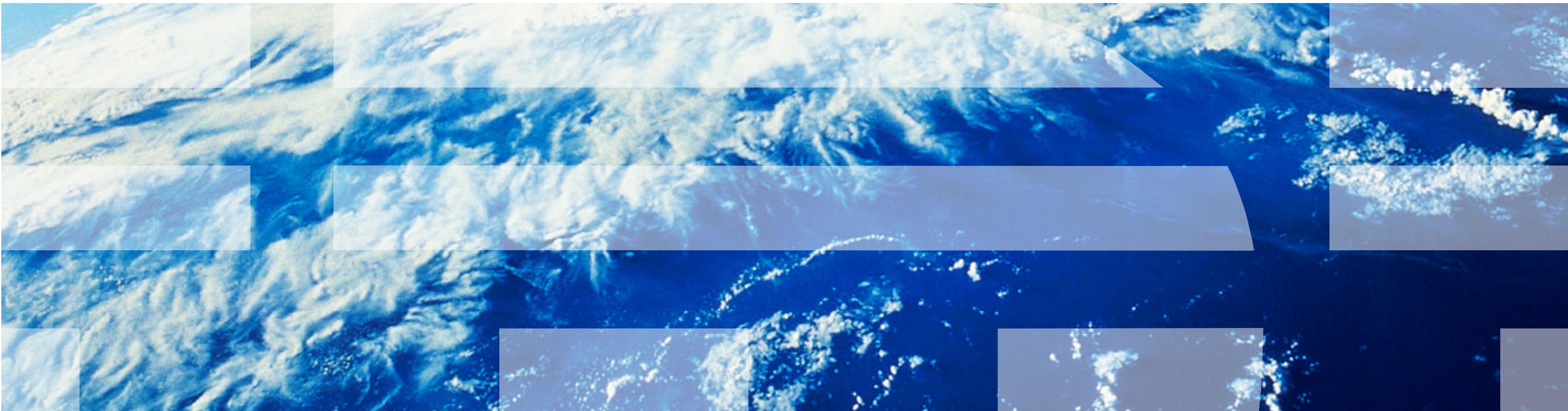
## Summary

- It's easy as data scientists (or software engineers) to lose sight that our code actually runs somewhere **physically**
- The cloud is not some abstract concept: these are huge physical sites consuming power equivalent to entire cities
- AI is accelerating the construction of new data centers
- Datacenter sustainability (especially in the age of AI) is going to be extremely important in the coming years

## Computer Systems for Data Science

### Topic 2

#### **Relational Model and SQL**



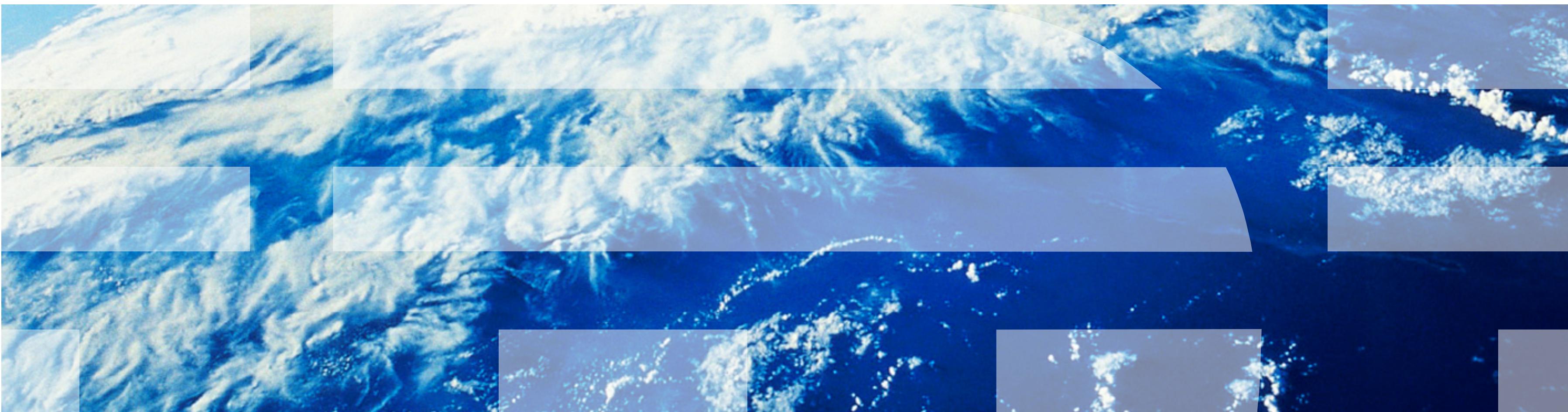
---

## What we'll cover in this topic

- **Intuition**
  - Basic relational model
  - Map-filter-reduce concept
- **Intro to SQL**
  - Schemas, query structure of SELECT-FROM-WHERE, JOINs

---

# Relational Model: Intuition



---

## A Motivating Example

A basic Course Management System (CMS):

*Entities or Relation* (e.g., Students, Courses)

*Relationships* (e.g., Alice is enrolled in CSEE 4121)

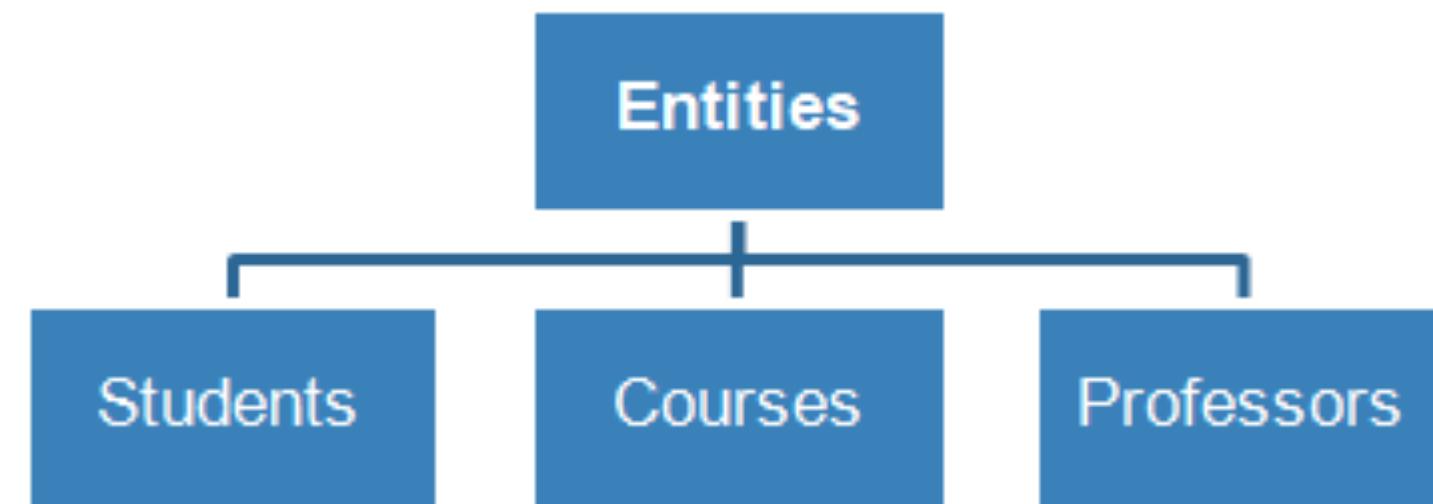
---

## A Motivating Example

A basic Course Management System (CMS):

*Entities or Relation* (e.g., Students, Courses)

*Relationships* (e.g., Alice is enrolled in CSEE 4121)



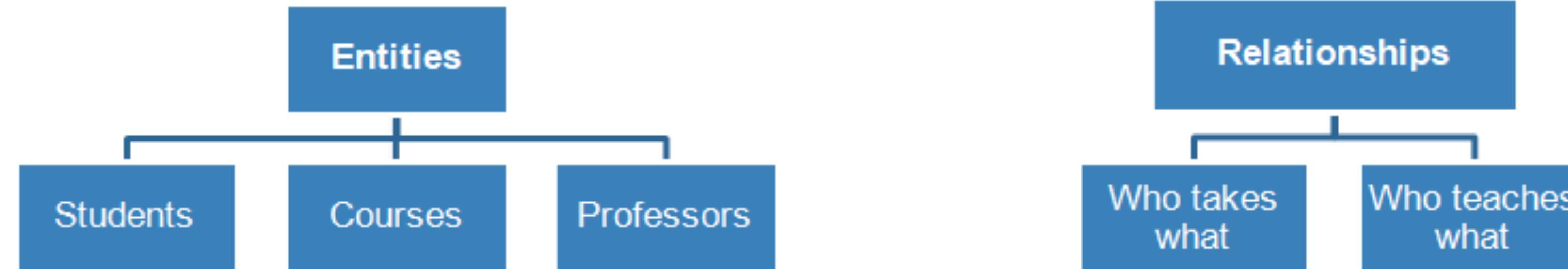
---

## A Motivating Example

A basic Course Management System (CMS):

*Entities or Relation* (e.g., Students, Courses)

*Relationships* (e.g., Alice is enrolled in CSEE 4121)



---

## Intuition: Spreadsheet Tables

---

## Intuition: Spreadsheet Tables

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

# Intuition: Spreadsheet Tables

## Logical Schema

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room: string)

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room: string)

Enrolled(cuid: string, cid: string, grade: string)

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room: string)

Enrolled(cuid: string, cid: string, grade: string)

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room: string)

Enrolled(cuid: string, cid: string, grade: string)

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room: string)

Enrolled(cuid: string, cid: string, grade: string)

### Queries [“compute” over tables]

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room: string)

Enrolled(cuid: string, cid: string, grade: string)

### Queries [“compute” over tables]

Alice’s GPA?

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room: string)

Enrolled(cuid: string, cid: string, grade: string)

### Queries [“compute” over tables]

Alice’s GPA?

Jay’s classes?

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room: string)

Enrolled(cuid: string, cid: string, grade: string)

### Queries [“compute” over tables]

Alice’s GPA?

Jay’s classes?

AVG student GPA?

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Intuition: Spreadsheet Tables

### Logical Schema

Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room: string)

Enrolled(cuid: string, cid: string, grade: string)

### Queries [“compute” over tables]

Alice’s GPA?

Jay’s classes?

AVG student GPA?

AVG student GPA in CSEE 4121?

| Students |             |     | Enrolled |      |       |
|----------|-------------|-----|----------|------|-------|
| CUID     | Name        | GPA | CUID     | CID  | Grade |
| as2121   | Alice Smith | 4.3 | as2121   | 4121 | A+    |
| jg9999   | Jay Goodwin | 1.2 | jg9999   | 4121 | C     |
| mc2312   | Min Chang   | 2.2 | mc2312   | 3292 | A+    |
| zb1111   | Zorn Bjorn  | 3.8 | zb1111   | 2999 | D     |

| Courses |             |        |
|---------|-------------|--------|
| CID     | C-Name      | Room   |
| 4121    | Computer Sy | CEPSR  |
| 3292    | Databases   | MUDD 1 |
| 2999    | Algorithms  | MUDD 2 |

---

## Relational Model and Schemas

---

## Relational Model and Schemas

- Definition: Data model

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular
  - Elegant algebra (E.F. Codd et al)

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular
  - Elegant algebra (E.F. Codd et al)

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular
  - Elegant algebra (E.F. Codd et al)
- Definition: Schema

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular
  - Elegant algebra (E.F. Codd et al)
- Definition: Schema
  - Describes blueprint of table(s)

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular
  - Elegant algebra (E.F. Codd et al)
- Definition: Schema
  - Describes blueprint of table(s)

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular
  - Elegant algebra (E.F. Codd et al)
- Definition: Schema
  - Describes blueprint of table(s)
- Every relation has a schema

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular
  - Elegant algebra (E.F. Codd et al)
- Definition: Schema
  - Describes blueprint of table(s)
- Every relation has a schema
  - Logical Schema: describes types, names

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular
  - Elegant algebra (E.F. Codd et al)
- Definition: Schema
  - Describes blueprint of table(s)
- Every relation has a schema
  - Logical Schema: describes types, names
  - Physical Schema: describes data layout

---

## Relational Model and Schemas

- Definition: Data model
  - Organizing principle of data + operations
- Relational model (aka tables)
  - Simple and most popular
  - Elegant algebra (E.F. Codd et al)
- Definition: Schema
  - Describes blueprint of table(s)
- Every relation has a schema
  - Logical Schema: describes types, names
  - Physical Schema: describes data layout
  - Virtual Schema (Views): derived tables

---

## Data Independence

---

## Data Independence

1. Can we add a new column or attribute without rewriting the application?

---

## Data Independence

1. Can we add a new column or attribute without rewriting the application?

---

## Data Independence

1. Can we add a new column or attribute without rewriting the application?
  - **Logical Data Independence**

---

## Data Independence

1. Can we add a new column or attribute without rewriting the application?
  - **Logical Data Independence**
    - Protection from changes in the logical structure of the data

---

## Data Independence

1. Can we add a new column or attribute without rewriting the application?
  - **Logical Data Independence**
    - Protection from changes in the logical structure of the data

---

## Data Independence

1. Can we add a new column or attribute without rewriting the application?
  - **Logical Data Independence**
    - Protection from changes in the logical structure of the data
2. Do you need to care which disks/machines are the data stored on?

---

## Data Independence

1. Can we add a new column or attribute without rewriting the application?
  - **Logical Data Independence**
    - Protection from changes in the logical structure of the data
2. Do you need to care which disks/machines are the data stored on?

---

## Data Independence

1. Can we add a new column or attribute without rewriting the application?
  - **Logical Data Independence**
    - Protection from changes in the logical structure of the data
2. Do you need to care which disks/machines are the data stored on?
  - **Physical Data Independence**

---

## Data Independence

1. Can we add a new column or attribute without rewriting the application?
  - **Logical Data Independence**
    - Protection from changes in the logical structure of the data
2. Do you need to care which disks/machines are the data stored on?
  - **Physical Data Independence**
    - Protection from Physical Layout Changes

---

## Python Operating on Lists

---

# Python Operating on Lists

## Basic types

- Int
- Long
- String

---

# Python Operating on Lists

## Basic types

- Int
- Long
- String

## Map + Filter

- `map(function, list)`
- `filter(function, list)`

**Map** applies function to input list

**Filter** returns sub list that satisfies filter condition

# Python Operating on Lists

## Basic types

- Int
- Long
- String

## Map + Filter

- `map(function, list)`
- `filter(function, list)`

**Map** applies function to input list  
**Filter** returns sub list that satisfies filter condition

## Reduce/Aggregate

- `reduce(...)`

**Reduce** runs a computation on a list and returns a result  
E.g., SUM, AVG, MAX

---

## SQL Queries on Tables (Lists of Rows)

---

## SQL Queries on Tables (Lists of Rows)

### Basic types

- Int32, Int64
- Char[n]
- Float32, Float64

---

# SQL Queries on Tables (Lists of Rows)

## Basic types

- Int32, Int64
- Char[n]
- Float32, Float64

## Map + Filter

Single Table Query

```
SELECT c1, c2  
FROM   T  
WHERE  condition;
```

---

# SQL Queries on Tables (Lists of Rows)

## Basic types

- Int32, Int64
- Char[n]
- Float32, Float64

## Map + Filter

Single Table Query

```
SELECT c1, c2  
FROM   T  
WHERE  condition;
```

## Multi Table JOIN

```
SELECT c1, c2  
FROM   T1, T2  
WHERE  condition;
```

---

# SQL Queries on Tables (Lists of Rows)

## Basic types

- Int32, Int64
- Char[n]
- Float32, Float64

## Map + Filter

Single Table Query

```
SELECT c1, c2  
FROM T  
WHERE condition;
```

## Reduce/Aggregate

```
SELECT SUM(c1*c2)  
FROM T  
WHERE condition  
GROUP BY c3;
```

## Multi Table JOIN

```
SELECT c1, c2  
FROM T1, T2  
WHERE condition;
```

# SQL Queries on Tables (Lists of Rows)

## Basic types

- Int32, Int64
- Char[n]
- Float32, Float64

## Map + Filter

Single Table Query

```
SELECT c1, c2  
FROM T  
WHERE condition;
```

## Reduce/Aggregate

```
SELECT SUM(c1*c2)  
FROM T  
WHERE condition  
GROUP BY c3;
```

## Multi Table JOIN

```
SELECT c1, c2  
FROM T1, T2  
WHERE condition;
```

Map-Filter-Reduce pattern: Same simple/powerful idea in MapReduce, Hadoop, Spark, etc.

# SQL Cheat Sheet ([www.sqltutorial.org/sql-cheat-sheet](http://www.sqltutorial.org/sql-cheat-sheet))

## SQL CHEAT SHEET <http://www.sqltutorial.org>



### QUERYING DATA FROM A TABLE

**SELECT c1, c2 FROM t;**  
Query data in columns c1, c2 from a table

**SELECT \* FROM t;**  
Query all rows and columns from a table

**SELECT c1, c2 FROM t WHERE condition;**  
Query data and filter rows with a condition

**SELECT DISTINCT c1 FROM t WHERE condition;**  
Query distinct rows from a table

**SELECT c1, c2 FROM t ORDER BY c1 ASC [DESC];**  
Sort the result set in ascending or descending order

**SELECT c1, c2 FROM t ORDER BY c1 LIMIT n OFFSET offset;**  
Skip offset of rows and return the next n rows

**SELECT c1, aggregate(c2) FROM t GROUP BY c1;**  
Group rows using an aggregate function

**SELECT c1, aggregate(c2) FROM t GROUP BY c1 HAVING condition;**  
Filter groups using HAVING clause

### QUERYING FROM MULTIPLE TABLES

**SELECT c1, c2 FROM t1 INNER JOIN t2 ON condition;**  
Inner join t1 and t2

**SELECT c1, c2 FROM t1 LEFT JOIN t2 ON condition;**  
Left join t1 and t2

**SELECT c1, c2 FROM t1 RIGHT JOIN t2 ON condition;**  
Right join t1 and t2

**SELECT c1, c2 FROM t1 FULL OUTER JOIN t2 ON condition;**  
Perform full outer join

**SELECT c1, c2 FROM t1 CROSS JOIN t2;**  
Produce a Cartesian product of rows in tables

**SELECT c1, c2 FROM t1, t2;**  
Another way to perform cross join

**SELECT c1, c2 FROM t1 A INNER JOIN t2 B ON condition;**  
Join t1 to itself using INNER JOIN clause

### USING SQL OPERATORS

**SELECT c1, c2 FROM t1 UNION [ALL] SELECT c1, c2 FROM t2;**  
Combine rows from two queries

**SELECT c1, c2 FROM t1 INTERSECT SELECT c1, c2 FROM t2;**  
Return the intersection of two queries

**SELECT c1, c2 FROM t1 MINUS SELECT c1, c2 FROM t2;**  
Subtract a result set from another result set

**SELECT c1, c2 FROM t1 WHERE c1 [NOT] LIKE pattern;**  
Query rows using pattern matching %, \_

**SELECT c1, c2 FROM t WHERE c1 [NOT] IN value\_list;**  
Query rows in a list

**SELECT c1, c2 FROM t WHERE c1 BETWEEN low AND high;**  
Query rows between two values

**SELECT c1, c2 FROM t WHERE c1 IS [NOT] NULL;**  
Check if values in a table is NULL or not

---

## Other data models

---

## Other data models

**Key-Value** — The simplest model: every piece of data is stored as a key mapped to a value (which can be anything—string, JSON, binary blob). No schema, no relationships. Examples: Redis, DynamoDB, etcd. Great for caching, session storage, and simple lookups where you always know the key.

**Document** — Stores semi-structured documents (typically JSON or BSON) that can have nested fields and varying structures. Unlike relational tables, each document can have different fields. Examples: MongoDB, CouchDB, Firestore. Good for content management, user profiles, and applications where schema flexibility matters.

**Wide-Column / Column-Family** — Data is organized by columns rather than rows, with rows that can have different columns. Optimized for queries over large datasets where you typically read specific columns across many rows. Examples: Cassandra, HBase, Google Bigtable. Common for time-series data, analytics, and write-heavy workloads.

**Graph** — Models data as nodes (entities) and edges (relationships), with properties on both. Traversing relationships is a first-class operation rather than an expensive join. Examples: Neo4j, Amazon Neptune, TigerGraph. Ideal for social networks, fraud detection, and recommendation engines.

**Time-Series** — Optimized specifically for timestamped data points, with efficient compression and time-based queries. Examples: InfluxDB, TimescaleDB, Prometheus. Used for metrics, IoT sensor data, and monitoring.

**Vector** — Stores high-dimensional embeddings and supports similarity search (nearest neighbor queries). Examples: Pinecone, Milvus, pgvector. Essential for AI applications like semantic search and RAG systems.

---

# Intro to SQL



---

## SQL Introduction

- SQL is a standard language for querying and manipulating data
- SQL is a **very high-level** programming language
  - This works because it is optimized well!

SQL stands for  
Structured  
Query  
Language

---

## SQL is a...

- **Data Manipulation Language (DML)**
  - Query one or more tables
  - Insert/delete/modify tuples in tables
- **Data Definition Language (DDL)**
  - Define relational schemata
  - Create/alter/delete tables and their attributes

---

## Basic Set Algebra Concepts

---

## Basic Set Algebra Concepts

- List: [1, 1, 2, 3]      Ordered, duplicates

---

## Basic Set Algebra Concepts

- List: [1, 1, 2, 3]      Ordered, duplicates
- Set: {2, 1, 3}      Unordered, no duplicates

---

## Basic Set Algebra Concepts

- List:  $[1, 1, 2, 3]$       Ordered, duplicates
- Set:  $\{2, 1, 3\}$       Unordered, no duplicates
- Multiset:  $\{2, 1, 3, 1\}$       Unordered, duplicates

# Basic Set Algebra Concepts

- List:  $[1, 1, 2, 3]$  Ordered, duplicates
- Set:  $\{2, 1, 3\}$  Unordered, no duplicates
- Multiset:  $\{2, 1, 3, 1\}$  Unordered, duplicates
- Unions:
  - Set:  $\{2, 1, 3\} \cup \{2, 3\} = \{2, 1, 3\}$
  - Multiset:  $\{2, 1, 3\} \cup \{2, 3\} = \{2, 1, 3, 2, 3\}$

# Basic Set Algebra Concepts

- List:  $[1, 1, 2, 3]$  Ordered, duplicates
- Set:  $\{2, 1, 3\}$  Unordered, no duplicates
- Multiset:  $\{2, 1, 3, 1\}$  Unordered, duplicates

- Unions:
  - Set:  $\{2, 1, 3\} \cup \{2, 3\} = \{2, 1, 3\}$
  - Multiset:  $\{2, 1, 3\} \cup \{2, 3\} = \{2, 1, 3, 2, 3\}$

---

## Basic Set Algebra Concepts

- List:  $[1, 1, 2, 3]$       Ordered, duplicates
- Set:  $\{2, 1, 3\}$       Unordered, no duplicates
- Multiset:  $\{2, 1, 3, 1\}$       Unordered, duplicates

- Unions:
  - Set:  $\{2, 1, 3\} \cup \{2, 3\} = \{2, 1, 3\}$
  - Multiset:  $\{2, 1, 3\} \cup \{2, 3\} = \{2, 1, 3, 2, 3\}$
  
- Cross-product:
  - $\{1, 1, 2, 3\} * \{y, z\} = \{1, y\}, \{1, y\}, \{2, y\}, \{3, y\}, \{1, z\}, \{1, z\}, \{2, z\}, \{3, z\}$

---

# Tables in SQL

## Product

| PName       | Price    | Manuf      |
|-------------|----------|------------|
| Gizmo       | \$19.99  | GizmoWorks |
| Powergizmo  | \$29.99  | GizmoWorks |
| SingleTouch | \$149.99 | Canon      |
| MultiTouch  | \$203.99 | Hitachi    |

A relation or table is a multiset of tuples/rows having the attributes specified by the schema

# Tables in SQL

## Product

| PName       | Price    | Manuf      |
|-------------|----------|------------|
| Gizmo       | \$19.99  | GizmoWorks |
| Powergizmo  | \$29.99  | GizmoWorks |
| SingleTouch | \$149.99 | Canon      |
| MultiTouch  | \$203.99 | Hitachi    |

An attribute (or column) is a typed data entry present in each tuple in the relation

*Attributes must have an atomic type in standard SQL, i.e. not a list, set, etc.*

---

# Tables in SQL

## Product

| PName       | Price    | Manuf      |
|-------------|----------|------------|
| Gizmo       | \$19.99  | GizmoWorks |
| Powergizmo  | \$29.99  | GizmoWorks |
| SingleTouch | \$149.99 | Canon      |
| MultiTouch  | \$203.99 | Hitachi    |

A **tuple** or **row** or **record** is a single entry in the table having the attributes specified by the schema

# Tables in SQL

## Product

| PName       | Price    | Manuf      |
|-------------|----------|------------|
| Gizmo       | \$19.99  | GizmoWorks |
| Powergizmo  | \$29.99  | GizmoWorks |
| SingleTouch | \$149.99 | Canon      |
| MultiTouch  | \$203.99 | Hitachi    |

The number of tuples is the cardinality of the relation

The number of attributes is the arity of the relation

---

## Data Types in SQL

### Atomic types:

Characters: CHAR(20), VARCHAR(50)

Numbers: INT, BIGINT, SMALLINT, FLOAT

Others: MONEY, DATETIME...

Every attribute must have an atomic type

---

# Table Schemas

Product(Pname: *string*, Price: *float*, Category: *string*, Manufacturer: *string*)

Product(Pname: *string*, Price: *float*, Category: *string*, Manufacturer: *string*)

---

# Table Schemas

The **schema** of a table is the table name, its attributes, and their types:

Product(Pname: *string*, Price: *float*, Category: *string*, Manufacturer: *string*)

Product(Pname: *string*, Price: *float*, Category: *string*, Manufacturer: *string*)

---

# Table Schemas

The **schema** of a table is the table name, its attributes, and their types:

Product(Pname: *string*, Price: *float*, Category: *string*, Manufacturer: *string*)

A **key** is an attribute whose values are unique; we underline a key

# Table Schemas

The **schema** of a table is the table name, its attributes, and their types:

Product(Pname: *string*, Price: *float*, Category: *string*, Manufacturer: *string*)

A **key** is an attribute whose values are unique; we underline a key

Product(Pname: *string*, Price: *float*, Category: *string*, Manufacturer: *string*)

---

# Key constraints

---

# Key constraints

A **key** is a **minimal subset of attributes** that acts as a unique identifier for tuples in a relation

- A key is an implicit constraint on which tuples can be in the relation
- i.e. if two tuples agree on the values of the key, then they must be the same tuple!

---

# Key constraints

A **key** is a **minimal subset of attributes** that acts as a unique identifier for tuples in a relation

- A key is an implicit constraint on which tuples can be in the relation
- i.e. if two tuples agree on the values of the key, then they must be the same tuple!

Students(cuid:string, name:string, gpa: float)

# Key constraints

A **key** is a **minimal subset of attributes** that acts as a unique identifier for tuples in a relation

- A key is an implicit constraint on which tuples can be in the relation
- i.e. if two tuples agree on the values of the key, then they must be the same tuple!

Students(cuid:string, name:string, gpa: float)

1. Which would you select as a key?

# Key constraints

A **key** is a **minimal subset of attributes** that acts as a unique identifier for tuples in a relation

- A key is an implicit constraint on which tuples can be in the relation
- i.e. if two tuples agree on the values of the key, then they must be the same tuple!

Students(cuid:string, name:string, gpa: float)

1. Which would you select as a key?
2. Is a key always guaranteed to exist?

---

# Declaring Schema

```
Students(cuid: string, name: string, gpa: float)
```

```
CREATE TABLE Students (
  cuid CHAR(20),
  name VARCHAR(50),
  gpa float,
  PRIMARY KEY (cuid),
)
```

---

# NULL and NOT NULL

---

# NULL and NOT NULL

- To say “does not have value,” we use **NULL**

Students(cuid:string, name:string, gpa: float)

---

# NULL and NOT NULL

- To say “does not have value,” we use **NULL**

Students(cuid:string, name:string, gpa: float)

| cuid | name  | gpa                                                      |
|------|-------|----------------------------------------------------------|
| 123  | Alice | 3.5<br><i>Say, Jim just enrolled in his first class.</i> |
| 143  | Jim   | NULL                                                     |

# NULL and NOT NULL

- To say “does not have value,” we use **NULL**

Students(cuid:string, name:string, gpa: float)

| cuid | name  | gpa  |
|------|-------|------|
| 123  | Alice | 3.5  |
| 143  | Jim   | NULL |

*Say, Jim just enrolled in his first class.*

In SQL, we may constrain a column to be NOT NULL,  
e.g., “name” in this table

# NULL and NOT NULL

- To say “does not have value,” we use **NULL**

Students(cuid:string, name:string, gpa: float)

| cuid | name  | gpa  |
|------|-------|------|
| 123  | Alice | 3.5  |
| 143  | Jim   | NULL |

3. Say, Jim just enrolled in his first class.



In SQL, we may constrain a column to be NOT NULL,  
e.g., “name” in this table

---

# General Constraints

---

# General Constraints

- We can actually specify arbitrary assertions  
E.g. “*There cannot be 25 people in the DB class*”
- In practice, we don’t specify many such constraints. Why?  
**Performance!**

Usually we do something ugly (or avoid doing something convenient) for the sake of performance

---

# Summary of Schema Information

- Schema and Constraints are how databases understand the semantics (meaning) of data
- SQL supports general constraints:  
**Keys are most important**

---

## API Schema

- Translation layer between external clients and internal database schema
- Same logical entity might be represented differently
  - (e.g., database splits User across multiple tables, but API returns a single unified User object)
- API can hide sensitive database details or expose computed/aggregated data not directly stored
- Database schema can change without breaking the API if the translation layer is updated accordingly

---

## API Schema

- Translation layer between external clients and internal database schema
- Same logical entity might be represented differently
  - (e.g., database splits User across multiple tables, but API returns a single unified User object)
- API can hide sensitive database details or expose computed/aggregated data not directly stored
- Database schema can change without breaking the API if the translation layer is updated accordingly
- Defines the structure of data in transit
  - request/response formats, endpoints, parameters
- Optimized for usability, clarity, and client needs
- External contract - publicly exposed interface that clients depend on
- Uses language-agnostic formats
  - (JSON, XML, Protocol Buffers) with type systems
- Changes must maintain backward compatibility or use versioning

---

## Protocol Buffers

- API Schema definition language
- Provides libraries for convenience
- Comparable to JSON and XML
  - But better!
- Binary on the wire

# Protocol Buffers

- API Schema definition language
- Provides libraries for convenience
- Comparable to JSON and XML
  - But better!
- Binary on the wire

```
edition = "2023";

package tutorial;

message Person {
    string name = 1;
    int32 id = 2;
    string email = 3;

    enum PhoneType {
        PHONE_TYPE_UNSPECIFIED = 0;
        PHONE_TYPE_MOBILE = 1;
        PHONE_TYPE_HOME = 2;
        PHONE_TYPE_WORK = 3;
    }

    message PhoneNumber {
        string number = 1;
        PhoneType type = 2;
    }

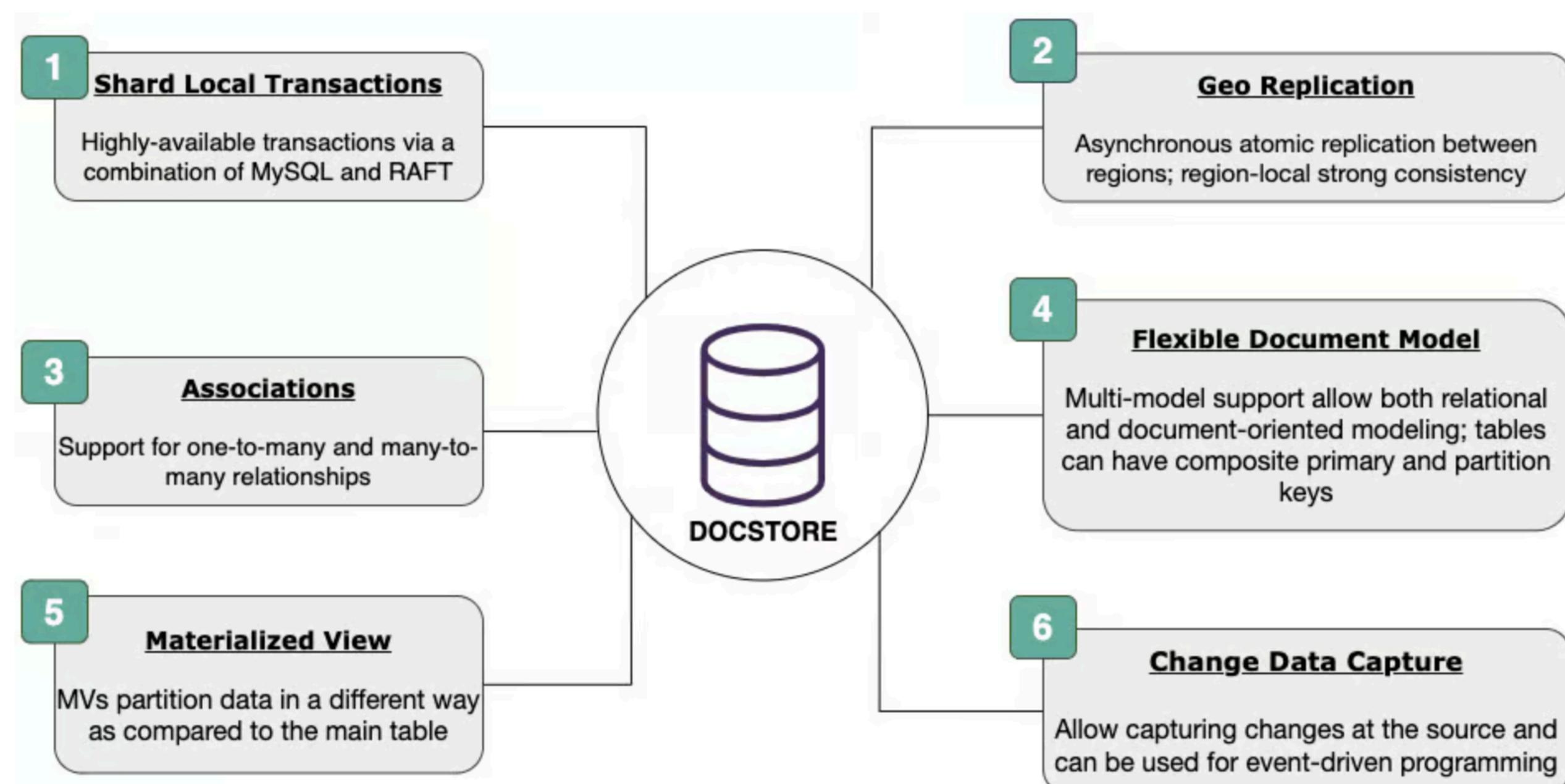
    repeated PhoneNumber phones = 4;
}

message AddressBook {
    repeated Person people = 1;
}
```

Engineering

# Evolving Schemaless into a Distributed SQL Database

February 23, 2021 / Global

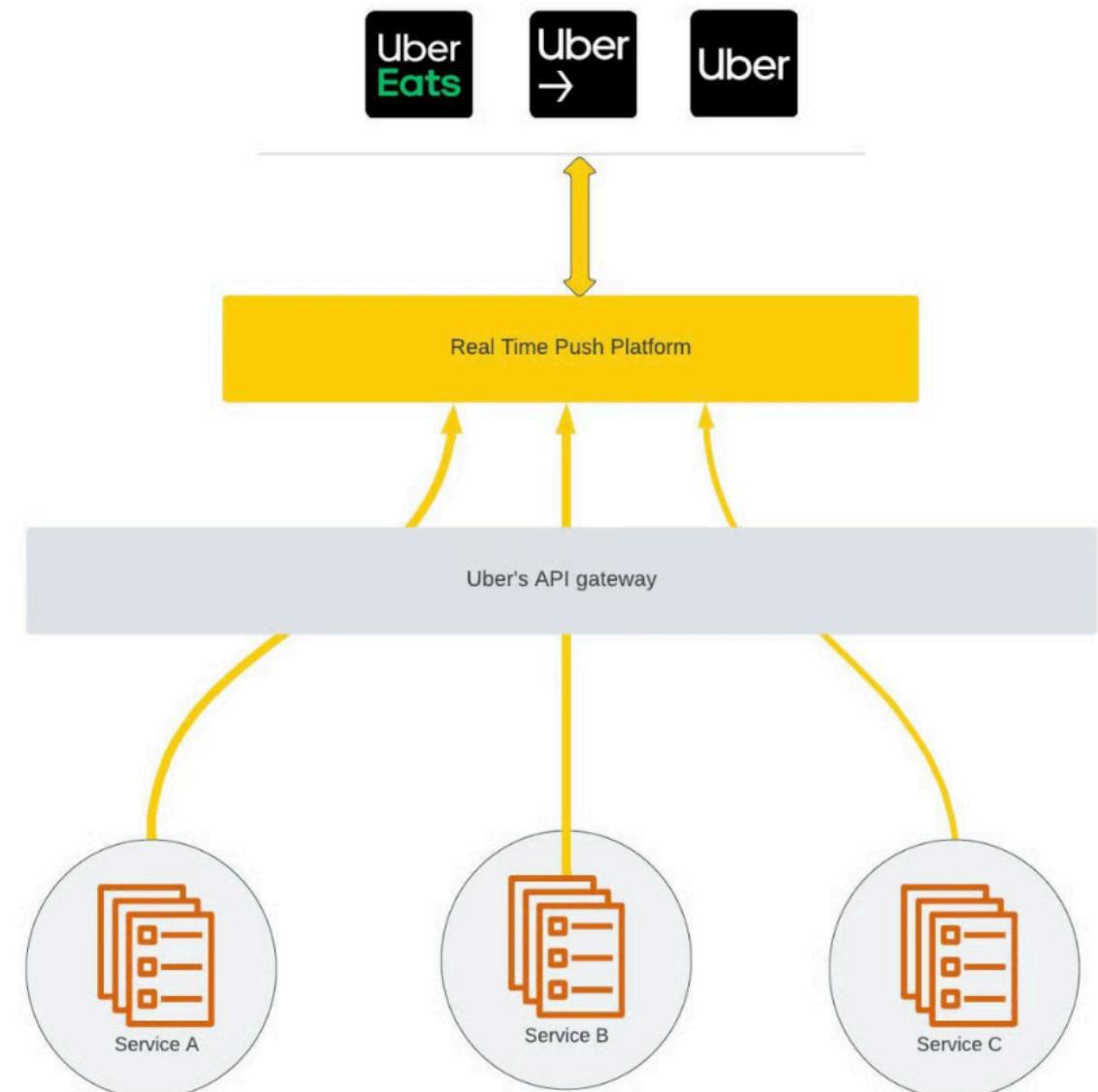


- Flexible schema, not no schema!
- Centralizing the complexity of consistency
- Operational reality may not be “beautiful”

Engineering, Backend, Mobile

# Uber's Next Gen Push Platform on gRPC

August 16, 2022 / Global



- Not request/response but streaming
- From REST-like to RPC-like
- Transport is as important as anything else
- Don't reinvent the wheel



In our last [blog post](#) we talked about how we went from polling for refreshing the app to a push-based flow to build our app experience.

<https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/>