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Class is about computer systems for data science
Very little math or algorithms
Broad overview of computer systems and databases

Performance concepts and rules of thumbs
Throughput and latency: two orthogonal metrics to evaluate computer systems (and
pizzerias)

Amdahl’s law:

ExTime,,, 1
Speedup(E) = - = >
ExTime,,, (1 — p> + <

Speedup bounded by: :

fraction o f time not enhanced

Time scales in computer systems can vary by millions
CPUs and memory operate in nanoseconds
Datacenter networks and SSDs operates in microseconds
Sending stuff over the Internet operates in milliseconds

Intro to datacenters
Modern datacenter design: standard hardware, replicated in racks (cabinets), rows,
deployed in football stadium-sized warehouses
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= Wrapping up data centers
— Power/cooling
— Networking
— Al datacenters
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Wrapping up data centers
Power/cooling
Networking
Al datacenters

Single table SQL

Relational model

Schemas

Data types

Limits

Basic queries
Schema evolution

APl schema
Case studies [1, 2]


https://www.uber.com/blog/schemaless-sql-database/
https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/
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Top-of-rack switch
Connecting machines in rack
Multiple links going to end-of-row routers

End-of-row router
Aggregate row of machines
Multiple links going to core routers

Core router
Multiple core routers

Each of these have different latencies, throughput
Higher in hierarchy -> higher throughput
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Early data centers built with off-the-shelf components
Standard servers
HVAC unit designs from malls

PUE ratio = Total Facility Power
Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0
Average PUE for AWS datacenters in 2024: 1.15 (only 15% from optimal!)

Some can be 1.04

Power is about 25% of monthly operating cost

And is (one of) the limiting factor in how large the datacenter can be
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Energy Efficient Data Centers

o Better power distribution - Fewer transformers

o Better cooling - use environment (air/water) rather than air conditioning
o Bring in outside air
o Evaporate some water

e [T Equipment range
o OKupto +115°F




Liquid immersion is the “hottest” new technology for
cooling data centers
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Massive amount of batteries to tolerate short glitches in power
Just need long enough for backup generators to startup

How do glitches occur?

Thunder, earthquake, power loss from power company, cyber attack, ...
Massive collections of backup generators
Huge fuel tanks to provide fuel for the generators

Fuel replenishment transportation network (e.g. fuel trucks)



Backup Power

e Massive amount of batteries to tolerate short glitches in power
o Just need long enough for backup generators to startup

e How do glitches occur?

O Thunder, earthquake, pOWer | — édNN] World Africa Americas Asia A:Jstralia .(;hina | Europe More v e Watch m Sign in
o Massive collections of backl BREGRLLELEE

New details in fatal shooting of Alex Pretti. Rep. Ilhan Omar attacked during town hall. Social media platforms on trial

e Huge fuel tanks to provide f

WORLD ASIA - 2 MIN READ

Explosive battery blaze in South Korea ‘paralyzes’
vital government services

SEP 27,2025 v

e Fuel replenishment transpol

By Laura Sharman
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e Increasingly, data centers powered by renewable energy
o But, solar/wind are intermittent

o Hydro, nuclear are more reliable

e In practice, many new data centers powered by solar / wind but rely on fossil
fuels from the electric grid when the wind isn’t blowing / sun isn’t shining
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At the scale of new data centers, things are breaking constantly

Every aspect of the data center must be able to tolerate failures

Solution: Redundancy
Multiple independent copies of all data
Independent? Consistency :(

Multiple independent network connections
Under utilized capacity

Multiple copies of every service
Releases, update cycles, resource use
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Cloudflare 1.1.1.1 incident on July
14,2025
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outage for 1.1.1.1 on the edge, resulting in downtime for 62 minutes for customers using
the 1.1.1.1 public DNS Resolver as well as intermittent degradation of service for
Gateway DNS.
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Cloudflare 1.1.1.1 incident on July

~thousands of hard drive failures 14 2025
~1000 individual machine failures 2025-07-15
~dozens of minor 30-second blips fo | i
Ash Pallarito | Joe Abley
It's always DNS (unless it's B
8 min read

~3 router failures (have to immediate
~12 router reloads (takes out DNS a ( | | o

~8 network maintenances (migh cloudflare has apologised after an outage on Friday morning hit websites
~5 racks go wonky (40-80 mach including LinkedIn, Zoom and Downdetector, the company’s second outage

~20 rack failures (40-80 machin in less than a month.
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Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

Differences
Compute: Thousands of GPUs, small ratio of CPU/GPU

Memory: Don’'t need as much traditional CPU memory, require lots of on-GPU High
Bandwidth Memory (HBM), which is much more expensive

Network: Al training has much more demanding networking requirements. Requires
dedicated high-bandwidth networking both within a server (e.g., NVIDIA's NVLINK)
and across servers (e.g., Infiniband)

We will cover these topics more deeply in the second half of the class
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Plentiful, inexpensive electricity
Examples - Oregon: Hydroelectric; lowa: Wind
Increasingly: nuclear, thermal

Good network connections
Access to the Internet backbone

Inexpensive land

Geographically near users

Speed of light latency
Country laws (e.g. Our citizen's data must be kept in our county.)

Available labor pool

Politics
Crime and corruption
Tax breaks

Al regulations



Google Data Center - Council Bluffs, lowa, USA
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Google data center pictures: Council Bluffs




Datacenter "megasites”

o Four Google datacenter sites within a 50-mile radius of each other, in the
lowa/Nebraska region
o May reach GW of total power consumption

Source: semianalysis
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e A‘responsible” data center tenant
o Qrganizes jobs and tasks into tiers
o Localizes and colocates
o Minimizes bandwidth usage
o Uses the right models (pubsub, RPCs, batch workflows)
o Respects quotas

o Provides telemetry for observation and adjustment
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It's easy as data scientists (or software engineers) to lose sight that
our code actually runs somewhere physically

The cloud is not some abstract concept: these are huge physical sites
consuming power equivalent to entire cities

Al is accelerating the construction of new data centers

Datacenter sustainability (especially in the age of Al) is going to be
extremely important in the coming years
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Borrowed from Shiva Shivakumar and Theodoros Rekatsinas

Computer Systems for Data Science
Topic 2

Relational Model and SQL
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Intuition
Basic relational model
Map-filter-reduce concept

Intro to SQL
Schemas, query structure of SELECT-FROM-WHERE, JOINs



Relational Model: Intuition




A Motivating Example

A basic Course Management System (CMS):

Entities or Relation (e.g., Students, Courses)

Relationships (e.g., Alice is enrolled in CSEE
4121)
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A Motivating Example

A basic Course Management System (CMS):

Entities or Relation (e.g., Students, Courses)

Relationships (e.g., Alice is enrolled in CSEE
4121)

Relationships

I—l—l l_'l_|

Students Courses Professors Who takes Who teaches
what what

25
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Intuition: Spreadsheet Tables
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Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
22
3.8

Enrolled

CuUID CID
as2121

89999

mc2312

zb1111

Grade
4121 A+
4121|C
3292 A+
2999 D




Intuition: Spreadsheet Tables

Logical Schema

Students Enrolled
CUID Name GPA CUID CID Grade
as2121 Alice Smith 4.3 as2121 4121 A+
89999 Jay Goodwin 1.2 89999 4121 C
mc2312 Min Chang 2.2 mc2312 3292 A+
zb1111 Zorn Bjorn 3.8 zb1111 2999 D
Courses
CID C-Name Room

4121 Computer Sy CEPSR

3292 Databases MUDD 1

2999 Algorithms MUDD 2

26



Intuition: Spreadsheet Tables

Logical Schema
Student(cuid: string, name: string, gpa: float)

Students Enrolled
CUID Name GPA CUID CID Grade
as2121 Alice Smith 4.3 as2121 4121 A+
j89999 Jay Goodwin 1.2 jg9999 4121 C
mc2312 Min Chang 2.2 mc2312 3292 A+
zb1111 Zorn Bjorn 3.8 zb1111 2999 D
Courses
CID C-Name Room

4121 Computer Sy CEPSR

3292 Databases MUDD 1

2999 Algorithms MUDD 2
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Logical Schema
Student(cuid: string, name: string, gpa: float)

Courses(cid: string, c-name: string, room:
string)

Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
945
3.8

Enrolled

CUID CID
as2121

j89999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D
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Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)
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Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

Queries [“compute” over tables]
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CUID
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Logical Schema

Student(cuid: string, name: string, gpa: float)
Courses(cid: string, c-name: string, room:

string)

Enrolled(cuid: string, cid: string, grade:

string)

Queries [“compute” over tables]
Alice’s GPA?

Jay’s classes?

AVG student GPA?

AVG student GPA in CSEE 41217
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Students
CUID
as2121
j89999
mc2312
zb1111

Courses
CiD

Name GPA
Alice Smith

Jay Goodwin

Min Chang

Zorn Bjorn

C-Name Room
4121 Computer Sy CEPSR
3292 Databases MUDD 1
2999 Algorithms MUDD 2

4.3
1.2
945
3.8

Enrolled

CUID CID
as2121

j89999

mc2312

zb1111

Grade
4121 A+
4121(C
3292 A+
2999 D
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Definition: Data model

Organizing principle of data + operations

Relational model (aka tables)

Simple and most popular
Elegant algebra (E.F. Codd et al)

Definition: Schema

Describes blueprint of table(s)

Every relation has a schema
Logical Schema: describes types, names
Physical Schema: describes data layout
Virtual Schema (Views): derived tables
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Can we add a new column or attribute without
rewriting the application?

Logical Data Independence
Protection from changes in the logical structure of the data

Do you need to care which disks/machines are the
data stored on?

Physical Data Independence
Protection from Physical Layout Changes
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* Int . (function, list)
 Long . (function, list)
e String

Map applies function
to input list

Filter returns sub list
that satisfies filter
condition
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Python Operating on Lists
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Basic types

Int
Wolgle
String

Map + Filter
. (function, list)
. (function, list)

Map applies function
to input list

Filter returns sub list
that satisfies filter
condition

Reduce/Aggregate
. (-..)

Reduce runs a
computation on a list
and returns a result

E.g., SUM, AVG, MAX
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Basic types

Int32, Int64
Char[n]
Float32, Float64

Map + Filter
Single Table Query

c1, c2
T
condition;

Multi Table JOIN

c1, c2
T1, T2
condition;




SQL Queries on Tables (Lists of Rows)

Basic types Map + Filter Reduce/Aggregate

.+ Int32, Int64 Single Table Query
 Char|[n] SUM(c1*c2)

 Float32, Floatb4 c1, c2 T
T condition

condition; c3;

Multi Table JOIN

c1, c2
T1, T2
condition;
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SQL Queries on Tables (Lists of Rows)

Basic types Map + Filter

Int32, Int64 Single Table Query

Char[n]

Float32, Float64 _<|§1 , C2

condition;

Multi Table JOIN

c1, c2
T1, T2
condition;

Reduce/Aggregate

SUM(c1*c2)
T

condition
c3;

Map-Filter-Reduce pattern: Same simple/powerful idea in
MapReduce, Hadoop, Spark, etc.




SQL Cheat Sheet (www.sqgltutorial.org/sql-cheat-sheet)
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QUERYING DATA FROM A TABLE

SQL CHEAT SHEET http://www.sqltutorial.org

QUERYING FROM MULTIPLE TABLES

SELECT <1, ¢c2 FROM t;
Query data in columns c1, ¢2 from a table

SELECT * FROM ¢t;
Query all rows and columns from a table

SELECT ¢1, ¢2 FROM t
WHERE condition;
Query data and filter rows with a condition

SELECT DISTINCT ¢1 FROM t
WHERE condition;
Query distinct rows from a table

SELECT cl, ¢2 FROM t

ORDER BY ¢l ASC [DESC];

Sort the result set in ascending or descending
order

SELECT cl, ¢c2 FROM t

ORDER BY cl1

LIMIT n OFFSET offset;

Skip offset of rows and return the next n rows

SELECT cl, aggregate(c2)

FROM t

GROUP BY cl;

Group rows using an aggregate function

SELECT cl, aggregate(c2)

FROM t

GROUP BY cl1

HAVING condition;

Filter groups using HAVING clause

SELECT 1, c2

FROM t1

INNER JOIN t2 ON condition;
Inner join t1 and 12

SELECT ¢1, ¢c2

FROM tl

LEFT JOIN t2 ON condition;
Left join 11 and 11

SELECT 1, c2

FROM t1

RIGHT JOIN t2 ON condition;
Right join 11 and 12

SELECT 1, c2

FROM t1

FULL OUTER JOIN t2 ON condition;
Perform full outer join

SELECT cl, c2

FROM t1

CROSS JOIN t2;

Produce a Cartesian product of rows in tables

SELECT c1, ¢2
FROM 1t1, t2;
Another way to perform cross join

SELECT 1, c2

FROM t1 A

INNER JOIN t2 B ON condition;

Join 11 to itself using INNER JOIN clause

USING SQL OPERATORS

SELECT cl1, ¢2 FROM t1
UNION [ALL]

SELECT cl, ¢c2 FROM t2;
Combine rows from two gueries

SELECT cl1, ¢2 FROM t1

INTERSECT

SELECT cl, ¢2 FROM t2;

Return the intersection of two queries

SELECT ¢1, ¢2 FROM t1

MINUS

SELECT ¢1, ¢2 FROM t2;

Subtract a result set from another result set

SELECT cl, ¢c2 FROM tl1
WHERE c1 [NOT] LIKE pattern;
Query rows using pattern matching %, _

SELECT cl, ¢c2 FROM t
WHERE ¢l [NOT] IN value._list;
Query rows in a list

SELECT <1, ¢2 FROM t
WHERE ¢1 BETWEEN low AND high;
Query rows between two values

SELECT cl, ¢2 FROM t
WHERE ¢l 1S [NOT] NULL;
Check if values in a table is NULL or not




Other data models
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Key-Value — The simplest model: every piece of data is stored as a key mapped to a value (which can
be anything—string, JSON, binary blob). No schema, no relationships. Examples: Redis, DynamoDB,
etcd. Great for caching, session storage, and simple lookups where you always know the key.

Document — Stores semi-structured documents (typically JSON or BSON) that can have nested fields
and varying structures. Unlike relational tables, each document can have different fields. Examples:
MongoDB, CouchDB, Firestore. Good for content management, user profiles, and applications where
schema flexibility matters.

Wide-Column / Column-Family — Data is organized by columns rather than rows, with rows that can
have different columns. Optimized for queries over large datasets where you typically read specific
columns across many rows. Examples: Cassandra, HBase, Google Bigtable. Common for time-series
data, analytics, and write-heavy workloads.

Graph — Models data as nodes (entities) and edges (relationships), with properties on both. Traversing
relationships is a first-class operation rather than an expensive join. Examples: Neo4j, Amazon Neptune,
TigerGraph. Ideal for social networks, fraud detection, and recommendation engines.

Time-Series — Optimized specifically for timestamped data points, with efficient compression and time-
based queries. Examples: InfluxDB, TimescaleDB, Prometheus. Used for metrics, loT sensor data, and

monitoring.

Vector — Stores high-dimensional embeddings and supports similarity search (nearest neighbor queries).
Examples: Pinecone, Milvus, pgvector. Essential for Al applications like semantic search and RAG
systems.
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e SQL is a standard language for querying
and manipulating data

e SQL is a very high-level programming
language

® This works because it is optimized well!

SQL stands for
Structured

Query
Language



SQL is a...

e Data Manipulation Language (DML)
Query one or more tables
Insert/delete/modify tuples in tables

e Data Definition Language (DDL)

Define relational schemata
Create/alter/delete tables and their attributes
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List: [1, 1, 2, 3] Ordered, duplicates
Set: {2, 1, 3} Unordered, no duplicates
Multiset: {2, 1, 3, 1} Unordered, duplicates

Unions:
Set: {2, 1,3} U {2, 3} ={2, 1, 3}
Multiset: {2, 1, 3} U {2, 3} ={2, 1, 3, 2, 3}

Cross-product:
{1,1,2,3} " {y. z} = {1, yh, {1, y1. {2, ¥y}, 8, v}, {1. 2}, {1, 2}, {2, 2}, {3, Z}



Tables in SQL

Product

PName
Gizmo
Powergizmo
SingleTouch

MultiTouch

Price

$19.99

$29.99

$149.99

$203.99

Manuf

GizmoWorks

GizmoWorks

Canon

Hitachi

A relation or table
IS a multiset of
tuples/rows having
the attributes
specified by the
schema



Tables in SQL

4 N
Gizmo $19.99 GizmoWorks i
An attribute (or
column) is a typed
Powergizmo $29.99 GizmoWorks data entry present
In each tuple in the
SingleTouch $149.99 Canon relation
MultiTouch $203.99 Hitachi
N /

Attributes must have an

atomic type in standard SQL,
I.e. not a list, set, efc.



Tables in SQL

Product
PName Price Manuf
Gizmo $19.99 GizmoWorks
Powergizmo $29.99 GizmoWorks
SingleTouch $149.99 Canon
$203.99

{ MultiTouch

Hitachi J

A tuple or row or
record is a single
entry in the table
having the attributes
specified by the
schema



Tables in SQL

Product

PName

Gizmo

Powergizmo

SingleTouch

MultiTouch

Price

$19.99

$29.99

$149.99

$203.99

Manuf

GizmoWorks

GizmoWorks

Canon

Hitachi

The number of attributes is the arity

of the relation

The number of tuples

is the cardinality of
the relation



Data Types in SQL

Atomic types:

Characters: CHAR(20), VARCHAR(50)

Numbers: INT, BIGINT, SMALLINT, FLOAT
Others: MONEY, DATETIME...

Every attribute must have an atomic type

41
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The schema of a table is the table name, its attributes,
and their types:
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Table Schemas

The schema of a table is the table name, its attributes,
and their types:

A key Is an attribute whose values are unique; we
underline a key

................................................................................................................................................................................................................................................




Key constraints



Key constraints

A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

e AKkey is an implicit constraint on which
tuples can be in the relation
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Key constraints

A key is a minimal subset of attributes that acts as a
unique identifier for tuples in a relation

e AKkey is an implicit constraint on which
tuples can be in the relation
e |.e. If two tuples agree on the values of the

key, then they must be the same tuple!

1. Which would you select as a key?
2. |s a key always guaranteed to exist?
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e To say “does not have value,” we use NULL

{Students(cuid:string, name:string, gpa: float) J




NULL and NOT NULL

e To say “does not have value,” we use NULL

[Students(cuid:string, name:string, gpa: float)

3 Say, Jim just enrolled in his first class.

cuid name gpa
123 Alice
143 Jim NULL




NULL and NOT NULL

e To say “does not have value,” we use

| |

123 Alice 3. say, Jim just enrolled in his first class.

143 Jim NULL

In SQL, we may constrain a column to be NOT NULL,
e.dg., 'name’ in this table



NULL and NOT NULL

e To say “does not have value,” we use NULL

[Students(cuid:string, name:string, gpa: float) }

cuid name gpa

123 Alice 3. say, Jim just enrolled in his firs

143 Jim NULL

In SQL, we may constrain a column to be NOT NULL,
e.dg., 'name’ in this table


https://www.youtube.com/watch?v=ybrQvs4x0Ps

General Constraints



General Constraints

e \We can actually specify arbitrary assertions
E.g. “There cannot be 25 people in the DB class”

e |n practice, we don’t specify many such
constraints. Why?
Performance!

Usually we do something ugly (or avoid doing something
convenient) for the sake of performance



Summary of Schema Information

e Schema and Constraints are how databases understand the
semantics (meaning) of data

e SQL supports general constraints:
Keys are most important
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Translation layer between external
clients and internal database schema

Same logical entity might be
represented differently

(e.g., database splits User across
multiple tables, but APl returns a
single unified User object)

API| can hide sensitive database
details or expose computed/
aggregated data not directly stored

Database schema can change
without breaking the API if the
translation layer is updated
accordingly
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Translation layer between external
clients and internal database schema

Same logical entity might be
represented differently

(e.g., database splits User across
multiple tables, but APl returns a
single unified User object)

API| can hide sensitive database
details or expose computed/
aggregated data not directly stored

Database schema can change
without breaking the API if the
translation layer is updated
accordingly

Defines the structure of data in transit

request/response formats, endpoints,
parameters

Optimized for usability, clarity, and client
needs

External contract - publicly exposed
interface that clients depend on

Uses language-agnostic formats

(JSON, XML, Protocol Buffers) with
type systems

Changes must maintain backward
compatibility or use versioning
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APl Schema definition language

Provides libraries for convenience

Comparable to JSON and XML
But better!

Binary on the wire



Protocol Buffers

= APl Schema definition language
= Provides libraries for convenience
= Comparable to JSON and XML

= But better!

= Binary on the wire
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edition = "2023";

package tutorial;

message Person {
string name = 1;
int32 id =
string email = 3;

enum PhoneType {

U

HONE_TY
HONE_TYPE_HOME =
AONE_TYPE_WORK

U

Il
WN

U

}

message PhoneNumber {
string number = 1;
PhoneType type = 2;
}

repeated PhoneNumber phones

}

message AddressBook {
repeated Person people

}

PHONE_TYPE_UNSPECIFIED =
PE_MOBILE = 1,

1;

0;
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Not request/response but streaming
From REST-like to RPC-like
Transport is as important as anything else

Don’t reinvent the wheel
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Service A Service C

In our last blog post we talked about how we went from polling for refreshing the app to a push-

based flow to build our app experience https://www.uber.com/blog/ubers-next-gen-push-platform-on-grpc/
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