
Lecture 1

Computer Systems for Data Science
Topic 1

Course Introduction
Systems concepts

Topic 1: Agenda

Intro to instructors
High-level overview

What is data science and big data?
Class goals and why should you care?

Class logistics
How the class is going to work?

Performance and systems rules of thumb
Intro to datacenters

Who Are We?

Course Instructors and TAs

5

Course Instructors and TAs

▪ Instructor: Waqar Aqeel

5

Course Instructors and TAs

▪ Instructor: Waqar Aqeel

▪ Head TAs: Krishen and Anouksha

5

Course Instructors and TAs

▪ Instructor: Waqar Aqeel

▪ Head TAs: Krishen and Anouksha

▪ TAs: Anisha, Vaishnavi, Sushmita, Arya

5

Course Instructors and TAs

▪ Instructor: Waqar Aqeel

▪ Head TAs: Krishen and Anouksha

▪ TAs: Anisha, Vaishnavi, Sushmita, Arya

▪ All CAs have experience in databases and systems

5

What is Data Science and Big Data?

This was a system for big data

Data science systems were expensive

Data science systems were expensive

They are still expensive!

Today: data is cheap

Today: data is cheap

Where is data coming from?

▪Physical devices

Where is data coming from?

▪Physical devices

▪Software logs

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

▪Internet of Things

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

▪Internet of Things

▪Social media, website contents

What can we do with all this data?

▪What video should I recommend to this user to view next?

16

What can we do with all this data?

▪What video should I recommend to this user to view next?

▪ Does this MRI image of a breast contain a tumor?

16

What can we do with all this data?

▪What video should I recommend to this user to view next?

▪ Does this MRI image of a breast contain a tumor?

▪Who is going to win the election?

16

What can we do with all this data?

▪What video should I recommend to this user to view next?

▪ Does this MRI image of a breast contain a tumor?

▪Who is going to win the election?

▪Which cities in the US will have high incidence of flu in 2 weeks?

16

What can we do with all this data?

▪What video should I recommend to this user to view next?

▪ Does this MRI image of a breast contain a tumor?

▪Who is going to win the election?

▪Which cities in the US will have high incidence of flu in 2 weeks?

▪ Is the object across from the car a pedestrian?

16

What is big data?

▪ “Extremely large data sets that may be analyzed computationally to reveal
patterns, trends, and associations, especially relating to human behavior and
interactions” – Oxford Dictionary

▪What’s an extremely large data set?
– Fits on a single machine?
– Fits on 10 machines?

17

What is this class about?

Our focus in this class: Computer Systems for Data Science

19

▪ Questions we will answer in this class:

Our focus in this class: Computer Systems for Data Science

19

▪ Questions we will answer in this class:

Our focus in this class: Computer Systems for Data Science

19

How are big data
systems designed?

▪ Questions we will answer in this class:

Our focus in this class: Computer Systems for Data Science

19

How to store the data?

How are big data
systems designed?

▪ Questions we will answer in this class:

Our focus in this class: Computer Systems for Data Science

19

How to store the data?

How to query/analyze
the data?

How are big data
systems designed?

▪ Questions we will answer in this class:

Our focus in this class: Computer Systems for Data Science

19

How to store the data?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

▪ Questions we will answer in this class:

Our focus in this class: Computer Systems for Data Science

19

How to store the data?

How do ML/AI systems
work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

▪ Questions we will answer in this class:

Our focus in this class: Computer Systems for Data Science

19

How to store the data?

How do ML/AI systems
work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

How to ensure privacy/
security/quality?

▪ Questions we will answer in this class: ▪ Questions we won’t answer in this class:

Our focus in this class: Computer Systems for Data Science

19

How to store the data?

How do ML/AI systems
work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

How to ensure privacy/
security/quality?

▪ Questions we will answer in this class: ▪ Questions we won’t answer in this class:

Our focus in this class: Computer Systems for Data Science

19

What algorithm should
we use?

How to store the data?

How do ML/AI systems
work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

How to ensure privacy/
security/quality?

▪ Questions we will answer in this class: ▪ Questions we won’t answer in this class:

Our focus in this class: Computer Systems for Data Science

19

What algorithm should
we use?

How to store the data?

How do ML/AI systems
work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

How to train my own
ML models

How to ensure privacy/
security/quality?

▪ Questions we will answer in this class: ▪ Questions we won’t answer in this class:

Our focus in this class: Computer Systems for Data Science

19

What algorithm should
we use?

How to store the data?

How do ML/AI systems
work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

How to train my own
ML models

How do we explain/
debug ML models?

How to ensure privacy/
security/quality?

▪ Questions we will answer in this class: ▪ Questions we won’t answer in this class:

Our focus in this class: Computer Systems for Data Science

19

What algorithm should
we use?

How to store the data?

How do ML/AI systems
work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

How to train my own
ML models

How do we explain/
debug ML models?

How can data be
visualized?

How to ensure privacy/
security/quality?

▪ Questions we will answer in this class: ▪ Questions we won’t answer in this class:

Our focus in this class: Computer Systems for Data Science

19

What algorithm should
we use?

How to store the data?

How do ML/AI systems
work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

How to train my own
ML models

How do we explain/
debug ML models?

How can data be
visualized?

What are the statistical/
mathematical foundations for

data science?

How to ensure privacy/
security/quality?

20

Course Objectives

20

Course Objectives

▪ Graduate-level course

20

Course Objectives

▪ Graduate-level course

▪ Broad overview of cloud systems that are used in data science
– Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)
– Computer systems foundations (throughput vs. latency, scalability vs. performance)
– Distributed systems for data scientists (sharding, fault tolerance)
– Systems for machine learning (accelerators, distributed training/inference infrastructure)
– Basic security for data scientists (encryption, privacy)

20

Course Objectives

▪ Graduate-level course

▪ Broad overview of cloud systems that are used in data science
– Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)
– Computer systems foundations (throughput vs. latency, scalability vs. performance)
– Distributed systems for data scientists (sharding, fault tolerance)
– Systems for machine learning (accelerators, distributed training/inference infrastructure)
– Basic security for data scientists (encryption, privacy)

▪ Throughout the class we will focus on how commonly used and modern cloud-
based big data systems work (BigQuery, RocksDB,…)

20

Course Objectives

▪ Graduate-level course

▪ Broad overview of cloud systems that are used in data science
– Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)
– Computer systems foundations (throughput vs. latency, scalability vs. performance)
– Distributed systems for data scientists (sharding, fault tolerance)
– Systems for machine learning (accelerators, distributed training/inference infrastructure)
– Basic security for data scientists (encryption, privacy)

▪ Throughout the class we will focus on how commonly used and modern cloud-
based big data systems work (BigQuery, RocksDB,…)

▪ The class will give a broad and hopefully practical introduction to these topics
geared towards data scientists, but does not replace core CS/EE classes like OS,
databases, distributed systems, security, architecture, ML

20

Course Objectives

▪ Graduate-level course

▪ Broad overview of cloud systems that are used in data science
– Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)
– Computer systems foundations (throughput vs. latency, scalability vs. performance)
– Distributed systems for data scientists (sharding, fault tolerance)
– Systems for machine learning (accelerators, distributed training/inference infrastructure)
– Basic security for data scientists (encryption, privacy)

▪ Throughout the class we will focus on how commonly used and modern cloud-
based big data systems work (BigQuery, RocksDB,…)

▪ The class will give a broad and hopefully practical introduction to these topics
geared towards data scientists, but does not replace core CS/EE classes like OS,
databases, distributed systems, security, architecture, ML

▪ You come from diverse backgrounds: Some of the content will be repetitive for
students who have taken the classes above, like databases, systems, networks etc.

20

Course Objectives

▪ Graduate-level course

▪ Broad overview of cloud systems that are used in data science
– Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)
– Computer systems foundations (throughput vs. latency, scalability vs. performance)
– Distributed systems for data scientists (sharding, fault tolerance)
– Systems for machine learning (accelerators, distributed training/inference infrastructure)
– Basic security for data scientists (encryption, privacy)

▪ Throughout the class we will focus on how commonly used and modern cloud-
based big data systems work (BigQuery, RocksDB,…)

▪ The class will give a broad and hopefully practical introduction to these topics
geared towards data scientists, but does not replace core CS/EE classes like OS,
databases, distributed systems, security, architecture, ML

▪ You come from diverse backgrounds: Some of the content will be repetitive for
students who have taken the classes above, like databases, systems, networks etc.

▪ Required background
– Programming experience with Python
– Both programming assignments will be submitted in Python

21

Course Administration and Grading

21

Course Administration and Grading

▪ All materials, assignments, etc. posted on course website
▪ Show locally, link to come

21

Course Administration and Grading

▪ All materials, assignments, etc. posted on course website
▪ Show locally, link to come

▪ Only one section

21

Course Administration and Grading

▪ All materials, assignments, etc. posted on course website
▪ Show locally, link to come

▪ Only one section

▪ Announcement/Q&A will be posted on Ed

21

Course Administration and Grading

▪ All materials, assignments, etc. posted on course website
▪ Show locally, link to come

▪ Only one section

▪ Announcement/Q&A will be posted on Ed

▪ Lecture Materials
– Lecture slides
– No textbook

21

Course Administration and Grading

▪ All materials, assignments, etc. posted on course website
▪ Show locally, link to come

▪ Only one section

▪ Announcement/Q&A will be posted on Ed

▪ Lecture Materials
– Lecture slides
– No textbook

▪ Homework, assignments, exams
– Programming assignment 2: (5%)
– Written assignment 2: systems and databases (5%)
– Programming assignment 3: Indexing and filtering (10%)
– Written assignment 4: distributed systems, ML, security (5%)
– In-person midterm (25%)
– In-person final exam (50%)

21

Course Administration and Grading

▪ All materials, assignments, etc. posted on course website
▪ Show locally, link to come

▪ Only one section

▪ Announcement/Q&A will be posted on Ed

▪ Lecture Materials
– Lecture slides
– No textbook

▪ Homework, assignments, exams
– Programming assignment 2: (5%)
– Written assignment 2: systems and databases (5%)
– Programming assignment 3: Indexing and filtering (10%)
– Written assignment 4: distributed systems, ML, security (5%)
– In-person midterm (25%)
– In-person final exam (50%)

– All assignments will be turned in online

21

Course Administration and Grading

▪ All materials, assignments, etc. posted on course website
▪ Show locally, link to come

▪ Only one section

▪ Announcement/Q&A will be posted on Ed

▪ Lecture Materials
– Lecture slides
– No textbook

▪ Homework, assignments, exams
– Programming assignment 2: (5%)
– Written assignment 2: systems and databases (5%)
– Programming assignment 3: Indexing and filtering (10%)
– Written assignment 4: distributed systems, ML, security (5%)
– In-person midterm (25%)
– In-person final exam (50%)

– All assignments will be turned in online

– All classes streamed online (Zoom) and recorded (available on CourseWorks)
– No attendance required

Programming Assignments

22

Programming Assignments

▪ 2 programming assignments
– Both done individually

22

Programming Assignments

▪ 2 programming assignments
– Both done individually

▪ Programming assignments are in Python
– Brush up on your Python if you are rusty: many resources online

• Most commonly-used language for data scientists

22

Programming Assignments

▪ 2 programming assignments
– Both done individually

▪ Programming assignments are in Python
– Brush up on your Python if you are rusty: many resources online

• Most commonly-used language for data scientists

▪ Programming assignment 1 done in Google Cloud (GCP)
– Goal: familiarize yourself with working in public cloud environment

• AWS / Azure / GCP are similar
• Many systems and deployment details are hidden / automated (but we won’t ignore them!)
• We will be focusing on systems-level problems, not on algorithms

– We will provide GCP credits, if you run out contact us
• If you reach $10 of credits or less, please contact: Arya Shidore
• But be careful not to spend too many!

22

Programming Assignments

▪ 2 programming assignments
– Both done individually

▪ Programming assignments are in Python
– Brush up on your Python if you are rusty: many resources online

• Most commonly-used language for data scientists

▪ Programming assignment 1 done in Google Cloud (GCP)
– Goal: familiarize yourself with working in public cloud environment

• AWS / Azure / GCP are similar
• Many systems and deployment details are hidden / automated (but we won’t ignore them!)
• We will be focusing on systems-level problems, not on algorithms

– We will provide GCP credits, if you run out contact us
• If you reach $10 of credits or less, please contact: Arya Shidore
• But be careful not to spend too many!

▪ Programming assignment goals
– Assignment 1: BigQuery

• Learning to use SQL on a big data set
– Assignment 3: Indexing and filtering data structures

• Understanding how real-world data systems data structures work, strengthen Python skills

22

23

More logistics

▪ Office hours:
▪ CAs will hold office hours every weekday over Google Meet
▪ Course calendar will have the meeting link: all office hours will use the same link

▪ Ed
▪ A CA is guaranteed to be available on Ed every weekday (when the school is open) from

9AM – 5PM. We will try to answer your questions as fast as possible

▪ Submit your assignments on time!
▪ Homework submission will be on Gradescope
▪ If you do not submit your HW on time, your grade will be 0%
▪ We will give you plenty of time for the assignments, don’t wait until the last minute!
▪ You can resubmit homework as many times as you want, until the deadline

24

Tentative Contents and Syllabus

24

Tentative Contents and Syllabus

– Computer systems and performance rules of thumb
– Latency vs. throughput
– Amdahl’s law
– Back-of-the-envelope systems math
– Performance bottlenecks

24

Tentative Contents and Syllabus

– Computer systems and performance rules of thumb
– Latency vs. throughput
– Amdahl’s law
– Back-of-the-envelope systems math
– Performance bottlenecks

– Data centers
– What is a data center?
– Data center failures
– Achieving reliability with smart software
– Core, Edge/Sateliite, PoP
– The rise of AI data centers

24

Tentative Contents and Syllabus

– Computer systems and performance rules of thumb
– Latency vs. throughput
– Amdahl’s law
– Back-of-the-envelope systems math
– Performance bottlenecks

– Data centers
– What is a data center?
– Data center failures
– Achieving reliability with smart software
– Core, Edge/Sateliite, PoP
– The rise of AI data centers

– Relational model and SQL
– Relational model and SQL
– SELECT, FROM, WHERE
– GROUPBY
– JOINs
– Nested queries
– Transactions
– ACID
– OLAP vs. OLTP, SQL vs. NoSQL
– Logging

25

Tentative Contents and Syllabus

– Storage systems
– The memory hierarchy
– Storage technologies primer
– Distributed file systems
– Indexing
– Filters
– Caching
– Storage engines
– In-memory key-value stores

25

Tentative Contents and Syllabus

– Storage systems
– The memory hierarchy
– Storage technologies primer
– Distributed file systems
– Indexing
– Filters
– Caching
– Storage engines
– In-memory key-value stores

– Distributed online databases (OLTP)
– 2 Phase Commit
– Locking
– Sharding
– Fault tolerance
– Replication and consensus

25

Tentative Contents and Syllabus

– Storage systems
– The memory hierarchy
– Storage technologies primer
– Distributed file systems
– Indexing
– Filters
– Caching
– Storage engines
– In-memory key-value stores

– Distributed online databases (OLTP)
– 2 Phase Commit
– Locking
– Sharding
– Fault tolerance
– Replication and consensus

– Analytics (OLAP)
– Mapreduce computing model
– Stragglers
– Lineage
– Fault tolerance in distributed analytics: lineage
– Streaming computing model

26

Tentative Contents and Syllabus

26

Tentative Contents and Syllabus

– Global serving infra
– Layered load balancing
– Multithreading
– GPUs

26

Tentative Contents and Syllabus

– Global serving infra
– Layered load balancing
– Multithreading
– GPUs

– Single-node ML
– GPUs and ML accelerators
– Kernels, ML compilation
– ML single node bottlenecks
– ML memory

26

Tentative Contents and Syllabus

– Global serving infra
– Layered load balancing
– Multithreading
– GPUs

– Single-node ML
– GPUs and ML accelerators
– Kernels, ML compilation
– ML single node bottlenecks
– ML memory

– Distributed ML
– ML network
– Distributed training
– Checkpointing
– Inference systems challenges

26

Tentative Contents and Syllabus

– Global serving infra
– Layered load balancing
– Multithreading
– GPUs

– Single-node ML
– GPUs and ML accelerators
– Kernels, ML compilation
– ML single node bottlenecks
– ML memory

– Distributed ML
– ML network
– Distributed training
– Checkpointing
– Inference systems challenges

– Security and privacy
– Security of big data systems
– Privacy consideration
– Data compliance and access control

26

Tentative Contents and Syllabus

– Global serving infra
– Layered load balancing
– Multithreading
– GPUs

– Single-node ML
– GPUs and ML accelerators
– Kernels, ML compilation
– ML single node bottlenecks
– ML memory

– Distributed ML
– ML network
– Distributed training
– Checkpointing
– Inference systems challenges

– Security and privacy
– Security of big data systems
– Privacy consideration
– Data compliance and access control

– Observability
– Data monitoring
– Production metrics as a big data system
– Data quality

Performance Concepts and Rules of Thumb

Adapted from David Patterson and Kathryn McKinley

Performance Evaluation

28

Performance Evaluation

▪ Metric: something we measure

28

Performance Evaluation

▪ Metric: something we measure

▪ Goal: evaluate how good/bad our computer system is performing

28

Performance Evaluation

▪ Metric: something we measure

▪ Goal: evaluate how good/bad our computer system is performing

▪ Examples:
– Power consumed by our database
– CPU cost of running a web backend
– Average time it takes to render a user page
– How many users can we support at the same time

28

Performance Evaluation

▪ Metric: something we measure

▪ Goal: evaluate how good/bad our computer system is performing

▪ Examples:
– Power consumed by our database
– CPU cost of running a web backend
– Average time it takes to render a user page
– How many users can we support at the same time

▪ Metrics allow us to compare two computer systems

28

Performance Evaluation

▪ Metric: something we measure

▪ Goal: evaluate how good/bad our computer system is performing

▪ Examples:
– Power consumed by our database
– CPU cost of running a web backend
– Average time it takes to render a user page
– How many users can we support at the same time

▪ Metrics allow us to compare two computer systems

▪ They are crucial for proving improvements, diagnosing regressions

28

Tradeoff: latency vs. throughput

29

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza to be fresh?
– Do you want your pizza to be cheap?

29

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza to be fresh?
– Do you want your pizza to be cheap?

▪Why do these conflict?

29

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza to be fresh?
– Do you want your pizza to be cheap?

▪Why do these conflict?

▪ Two different strategies for pizza company
– Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

29

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza to be fresh?
– Do you want your pizza to be cheap?

▪Why do these conflict?

▪ Two different strategies for pizza company
– Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

29

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza to be fresh?
– Do you want your pizza to be cheap?

▪Why do these conflict?

▪ Two different strategies for pizza company
– Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

▪ Latency = execution time for a single task (length of the pipe)

29

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza to be fresh?
– Do you want your pizza to be cheap?

▪Why do these conflict?

▪ Two different strategies for pizza company
– Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

▪ Latency = execution time for a single task (length of the pipe)

▪ Throughput = number of tasks per unit time (width of the pipe)

29

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza to be fresh?
– Do you want your pizza to be cheap?

▪Why do these conflict?

▪ Two different strategies for pizza company
– Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

▪ Latency = execution time for a single task (length of the pipe)

▪ Throughput = number of tasks per unit time (width of the pipe)

29

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza to be fresh?
– Do you want your pizza to be cheap?

▪Why do these conflict?

▪ Two different strategies for pizza company
– Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

▪ Latency = execution time for a single task (length of the pipe)

▪ Throughput = number of tasks per unit time (width of the pipe)

▪ A more relevant example:
– Latency requirement: Assuming cars drive at 65mph, so self driving car needs to recognize

an object in 0.1 seconds
– Throughput requirement: Object recognition system needs to process 1 million object

recognition tasks every second to support 10,000 cars simultaneously

29

Latency vs. Throughput is often a trade off

Plane DC to Paris Speed Passengers Throughput
(pmph)

Boeing 747 6.5 hours 610 mph 470 286,700
Concorde 3 hours 1350 mph 132 178,200

30

▪ Which plane has higher performance?

Latency vs. Throughput is often a trade off

Plane DC to Paris Speed Passengers Throughput
(pmph)

Boeing 747 6.5 hours 610 mph 470 286,700
Concorde 3 hours 1350 mph 132 178,200

30

▪ Which plane has higher performance?
▪ Time to do the task (execution time)

– Latency, execution time, response time

▪ Tasks per day, hour, week, sec (performance)
– Throughput, bandwidth, operations per second

▪ Depends on what YOU want

Definitions

31

Definitions

▪ Performance is in units of things-per-second
– Bigger is better

31

Definitions

▪ Performance is in units of things-per-second
– Bigger is better

▪ Response time of a system Y running Z

– performance(𝑌) =
1

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑍 𝑜𝑛 𝑌)

31

Definitions

▪ Performance is in units of things-per-second
– Bigger is better

▪ Response time of a system Y running Z

– performance(𝑌) =
1

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑍 𝑜𝑛 𝑌)

▪ Throughput of system Y running many requests

– performance(𝑌) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

31

Definitions

▪ Performance is in units of things-per-second
– Bigger is better

▪ Response time of a system Y running Z

– performance(𝑌) =
1

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑍 𝑜𝑛 𝑌)

▪ Throughput of system Y running many requests

– performance(𝑌) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

▪ “System X is n times faster than Y” means:

– 𝑛 =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑋)
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑌)

31

How do we improve performance?

32

How do we improve performance?

▪ Suppose we have a database that processes two types of queries:
– Query A finishes in 100 seconds
– Query B finishes in 2 seconds

▪We want better performance
– Which query should we improve?

▪ The answer: it depends! (a pretty lousy answer)

32

Speedup

▪ Make a change to the system

▪ Measure how much faster/slower it is

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐h𝑎𝑛𝑔𝑒
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐h𝑎𝑛𝑔𝑒

33

Speedup when we know details about the change

34

Speedup when we know details about the change

▪ Performance improvement depends on:
– How good is the enhancement? (factor S)
– How often is it used? (factor p)
– Who uses it? (business)

34

Speedup when we know details about the change

▪ Performance improvement depends on:
– How good is the enhancement? (factor S)
– How often is it used? (factor p)
– Who uses it? (business)

▪ Speedup due to enhancement E:

–

–
• Explanation:
• is the fraction of operations that are not affected by E

• is the fraction of operations that are affected by E, with the enhancement factor

–

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡h𝑜𝑢𝑡 𝐸

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡h 𝐸
=

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡h 𝐸
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡h𝑜𝑢𝑡 𝐸

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

(1 − 𝑝)𝑝
𝑆

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =
𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

34

Speedup when we know details about the change

▪ Performance improvement depends on:
– How good is the enhancement? (factor S)
– How often is it used? (factor p)
– Who uses it? (business)

▪ Speedup due to enhancement E:

–

–
• Explanation:
• is the fraction of operations that are not affected by E

• is the fraction of operations that are affected by E, with the enhancement factor

–

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡h𝑜𝑢𝑡 𝐸

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡h 𝐸
=

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡h 𝐸
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡h𝑜𝑢𝑡 𝐸

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

(1 − 𝑝)𝑝
𝑆

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =
𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

– It’s usually less formal. Most metrics either obviously matter or obviously don’t.

34

Speedup when we know details about the change

▪ Performance improvement depends on:
– How good is the enhancement? (factor S)
– How often is it used? (factor p)
– Who uses it? (business)

▪ Speedup due to enhancement E:

–

–
• Explanation:
• is the fraction of operations that are not affected by E

• is the fraction of operations that are affected by E, with the enhancement factor

–

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡h𝑜𝑢𝑡 𝐸

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡h 𝐸
=

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡h 𝐸
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡h𝑜𝑢𝑡 𝐸

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

(1 − 𝑝)𝑝
𝑆

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝐸) =
𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆

– It’s usually less formal. Most metrics either obviously matter or obviously don’t.

– Customers are either complaining, or they are not

34

Amdahl’s law: example

35

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

35

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

35

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

35

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [0.9 +
0.1
2] = 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

35

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [0.9 +
0.1
2] = 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

▪  only 5.3% overall speedup ☹𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑡𝑜𝑡𝑎𝑙 =
1

0.95
= 1.053

35

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [0.9 +
0.1
2] = 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

▪  only 5.3% overall speedup ☹𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑡𝑜𝑡𝑎𝑙 =
1

0.95
= 1.053

▪ Amdahl’s law: speedup bounded by

35

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [0.9 +
0.1
2] = 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

▪  only 5.3% overall speedup ☹𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑡𝑜𝑡𝑎𝑙 =
1

0.95
= 1.053

▪ Amdahl’s law: speedup bounded by
1

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

35

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [0.9 +
0.1
2] = 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

▪  only 5.3% overall speedup ☹𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑡𝑜𝑡𝑎𝑙 =
1

0.95
= 1.053

▪ Amdahl’s law: speedup bounded by
1

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

35

Amdahl’s law in simple terms:
Make the common case fast!

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [0.9 +
0.1
2] = 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

▪  only 5.3% overall speedup ☹𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑡𝑜𝑡𝑎𝑙 =
1

0.95
= 1.053

▪ Amdahl’s law: speedup bounded by
1

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

▪ Even if aggregated queries could be completed in zero time, our maximum speedup would be:

35

Amdahl’s law in simple terms:
Make the common case fast!

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [0.9 +
0.1
2] = 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

▪  only 5.3% overall speedup ☹𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑡𝑜𝑡𝑎𝑙 =
1

0.95
= 1.053

▪ Amdahl’s law: speedup bounded by
1

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

▪ Even if aggregated queries could be completed in zero time, our maximum speedup would be:

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
1

0.9
= 1.111

35

Amdahl’s law in simple terms:
Make the common case fast!

Amdahl’s law: example

▪We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [(1 − 𝑝) +
𝑝
𝑆]

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ [0.9 +
0.1
2] = 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

▪  only 5.3% overall speedup ☹𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑡𝑜𝑡𝑎𝑙 =
1

0.95
= 1.053

▪ Amdahl’s law: speedup bounded by
1

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛h𝑎𝑛𝑐𝑒𝑑

▪ Even if aggregated queries could be completed in zero time, our maximum speedup would be:

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
1

0.9
= 1.111

▪ More useful for parallel programming bottlenecks, but can be adapted here.

35

Amdahl’s law in simple terms:
Make the common case fast!

Useful back-of-the-envelope latency numbers (all rough estimates)

36

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second
– Microsecond (us): 1/1,000,000 second
– Millisecond (ms): 1/1000 second

36

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second
– Microsecond (us): 1/1,000,000 second
– Millisecond (ms): 1/1000 second

36

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second
– Microsecond (us): 1/1,000,000 second
– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

36

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second
– Microsecond (us): 1/1,000,000 second
– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

▪ Memory access: 100ns

▪ Read a small object from a random location on a local flash drive: 20,000ns, 20us

36

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second
– Microsecond (us): 1/1,000,000 second
– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

▪ Memory access: 100ns

▪ Read a small object from a random location on a local flash drive: 20,000ns, 20us

▪ Read a small object within the same network in a data center: 100,000ns, 100us

36

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second
– Microsecond (us): 1/1,000,000 second
– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

▪ Memory access: 100ns

▪ Read a small object from a random location on a local flash drive: 20,000ns, 20us

▪ Read a small object within the same network in a data center: 100,000ns, 100us

▪ Run a SQL query on a flash database: 1,000,000ns, 1ms

36

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second
– Microsecond (us): 1/1,000,000 second
– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

▪ Memory access: 100ns

▪ Read a small object from a random location on a local flash drive: 20,000ns, 20us

▪ Read a small object within the same network in a data center: 100,000ns, 100us

▪ Run a SQL query on a flash database: 1,000,000ns, 1ms

▪ Read a small random object from magnetic disk: 10,000,000ns, 10ms

36

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second
– Microsecond (us): 1/1,000,000 second
– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

▪ Memory access: 100ns

▪ Read a small object from a random location on a local flash drive: 20,000ns, 20us

▪ Read a small object within the same network in a data center: 100,000ns, 100us

▪ Run a SQL query on a flash database: 1,000,000ns, 1ms

▪ Read a small random object from magnetic disk: 10,000,000ns, 10ms

▪ Run a SQL query on a disk database: 20,000,000ns, 20ms

36

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second
– Microsecond (us): 1/1,000,000 second
– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

▪ Memory access: 100ns

▪ Read a small object from a random location on a local flash drive: 20,000ns, 20us

▪ Read a small object within the same network in a data center: 100,000ns, 100us

▪ Run a SQL query on a flash database: 1,000,000ns, 1ms

▪ Read a small random object from magnetic disk: 10,000,000ns, 10ms

▪ Run a SQL query on a disk database: 20,000,000ns, 20ms

▪ Roundtrip time over the internet: 30,000,000us, 30ms
– Bounded by the speed of light! Roundtrip light speed from NYC to Beijing is ~150ms

36

37

How can we use these numbers? A database example

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:
	 Prob(CPU) * cache_latency +

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:
	 Prob(CPU) * cache_latency +

	 Prob(not in CPU) * (Prob (memory) * memory_latency +

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:
	 Prob(CPU) * cache_latency +

	 Prob(not in CPU) * (Prob (memory) * memory_latency +

	 	 Prob (not in memory) * database_latency)

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:
	 Prob(CPU) * cache_latency +

	 Prob(not in CPU) * (Prob (memory) * memory_latency +

	 	 Prob (not in memory) * database_latency)

▪ 0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
= 0.1ns + 18ns + 0.72 * database latency

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:
	 Prob(CPU) * cache_latency +

	 Prob(not in CPU) * (Prob (memory) * memory_latency +

	 	 Prob (not in memory) * database_latency)

▪ 0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
= 0.1ns + 18ns + 0.72 * database latency

▪ Remote database latency = network latency + database latency = 1,100,000ns

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:
	 Prob(CPU) * cache_latency +

	 Prob(not in CPU) * (Prob (memory) * memory_latency +

	 	 Prob (not in memory) * database_latency)

▪ 0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
= 0.1ns + 18ns + 0.72 * database latency

▪ Remote database latency = network latency + database latency = 1,100,000ns

▪ Total average latency = 792,018ns or 790us

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:
	 Prob(CPU) * cache_latency +

	 Prob(not in CPU) * (Prob (memory) * memory_latency +

	 	 Prob (not in memory) * database_latency)

▪ 0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
= 0.1ns + 18ns + 0.72 * database latency

▪ Remote database latency = network latency + database latency = 1,100,000ns

▪ Total average latency = 792,018ns or 790us

▪ Total average latency ~= 0.72 * not in memory latency = 792,000ns

38

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name

using their CUID).
– It first checks if the object is already saved locally, either in the CPU cache or in memory:

• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:
	 Prob(CPU) * cache_latency +

	 Prob(not in CPU) * (Prob (memory) * memory_latency +

	 	 Prob (not in memory) * database_latency)

▪ 0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
= 0.1ns + 18ns + 0.72 * database latency

▪ Remote database latency = network latency + database latency = 1,100,000ns

▪ Total average latency = 792,018ns or 790us

▪ Total average latency ~= 0.72 * not in memory latency = 792,000ns

▪ Since 72% requests go to the database and it’s so slow, its latency dominates the
total latency

38

Disk vs. Flash, Cost vs. Performance

39

Disk vs. Flash, Cost vs. Performance

▪ Your app needs a cloud database that runs SQL queries

39

Disk vs. Flash, Cost vs. Performance

▪ Your app needs a cloud database that runs SQL queries

▪ You are considering running the database on two types of storage devices: flash vs. magnetic disk
– You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

39

Disk vs. Flash, Cost vs. Performance

▪ Your app needs a cloud database that runs SQL queries

▪ You are considering running the database on two types of storage devices: flash vs. magnetic disk
– You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

▪ Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)

39

Disk vs. Flash, Cost vs. Performance

▪ Your app needs a cloud database that runs SQL queries

▪ You are considering running the database on two types of storage devices: flash vs. magnetic disk
– You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

▪ Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)

▪ You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)

39

Disk vs. Flash, Cost vs. Performance

▪ Your app needs a cloud database that runs SQL queries

▪ You are considering running the database on two types of storage devices: flash vs. magnetic disk
– You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

▪ Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)

▪ You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)

▪ Scenario 1: Your user queries involve only a single database access in the cloud (over the Internet)
– Latency with flash database: 101ms
– Latency with disk database: 110ms

39

Disk vs. Flash, Cost vs. Performance

▪ Your app needs a cloud database that runs SQL queries

▪ You are considering running the database on two types of storage devices: flash vs. magnetic disk
– You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

▪ Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)

▪ You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)

▪ Scenario 1: Your user queries involve only a single database access in the cloud (over the Internet)
– Latency with flash database: 101ms
– Latency with disk database: 110ms

▪ Scenario 2: The app requires getting an initial response from the cloud database, then a user input, and
then another cloud database request
– Latency with flash database: 202ms
– Latency with disk database: 220ms

▪ Scenario 3: The app requires 20 sequential databases accesses within the cloud to compute a single user
query, and then it can return a response
– Latency with flash database: 120ms
– Latency with disk database: 300ms

39

Identifying performance bottlenecks

▪ My application is seeing an average latency of 200ms, where is the bottleneck?

▪ A few guiding questions:
1. What systems does the web page need to access? Which networks does it need to

traverse?
2. Start from the most common case + highest latency

40

Identifying performance bottlenecks

▪ My application is seeing an average latency of 200ms, where is the bottleneck?

▪ A few guiding questions:
1. What systems does the web page need to access? Which networks does it need to

traverse?
2. Start from the most common case + highest latency

▪ Example:
– Application needs to go through the Internet once ~ 1 * 100ms
– Hits a server that first checks if the request is saved on memory cache in the cloud ~

0.2 * 100us
– If not (80% of the time), goes over the network and accesses a single disk database ~

0.8 * 10ms

40

Identifying performance bottlenecks

▪ My application is seeing an average latency of 200ms, where is the bottleneck?

▪ A few guiding questions:
1. What systems does the web page need to access? Which networks does it need to

traverse?
2. Start from the most common case + highest latency

▪ Example:
– Application needs to go through the Internet once ~ 1 * 100ms
– Hits a server that first checks if the request is saved on memory cache in the cloud ~

0.2 * 100us
– If not (80% of the time), goes over the network and accesses a single disk database ~

0.8 * 10ms

▪ Guess 1: Internet slowdown (highest latency)

40

Identifying performance bottlenecks

▪ My application is seeing an average latency of 200ms, where is the bottleneck?

▪ A few guiding questions:
1. What systems does the web page need to access? Which networks does it need to

traverse?
2. Start from the most common case + highest latency

▪ Example:
– Application needs to go through the Internet once ~ 1 * 100ms
– Hits a server that first checks if the request is saved on memory cache in the cloud ~

0.2 * 100us
– If not (80% of the time), goes over the network and accesses a single disk database ~

0.8 * 10ms

▪ Guess 1: Internet slowdown (highest latency)

▪ Guess 2: database slowdown (second highest latency)

40

Summary

● Latency and throughput: two important metrics, sometimes correlate,
but often do not

● Amdahl’s law: optimize the common case

● Computer systems almost always involve a performance vs. cost trade
off

41

The Infrastructure of Big Data

Adapted from Mendel Rosenblum and Jeff Dean

Motivating example: Google web search (1999 vs. 2010)

43

Motivating example: Google web search (1999 vs. 2010)

▪ # docs: tens of millions to tens of billions	 	 	 ~1000X

43

Motivating example: Google web search (1999 vs. 2010)

▪ # docs: tens of millions to tens of billions	 	 	 ~1000X

▪ Queries processed/day:	 	 	 	 ~1000X

43

Motivating example: Google web search (1999 vs. 2010)

▪ # docs: tens of millions to tens of billions	 	 	 ~1000X

▪ Queries processed/day:	 	 	 	 ~1000X

▪ Per doc info in index:	 	 	 	 	 ~3X

43

Motivating example: Google web search (1999 vs. 2010)

▪ # docs: tens of millions to tens of billions	 	 	 ~1000X

▪ Queries processed/day:	 	 	 	 ~1000X

▪ Per doc info in index:	 	 	 	 	 ~3X

▪ Update latency: months to tens of seconds		 	 ~50000X

43

Motivating example: Google web search (1999 vs. 2010)

▪ # docs: tens of millions to tens of billions	 	 	 ~1000X

▪ Queries processed/day:	 	 	 	 ~1000X

▪ Per doc info in index:	 	 	 	 	 ~3X

▪ Update latency: months to tens of seconds		 	 ~50000X

▪ Average query latency: 1 seconds to 0.2 seconds	 	 ~5X

43

Motivating example: Google web search (1999 vs. 2010)

▪ # docs: tens of millions to tens of billions	 	 	 ~1000X

▪ Queries processed/day:	 	 	 	 ~1000X

▪ Per doc info in index:	 	 	 	 	 ~3X

▪ Update latency: months to tens of seconds		 	 ~50000X

▪ Average query latency: 1 seconds to 0.2 seconds	 	 ~5X

▪ More machines * faster machines:		 	 	 ~1000X

43

Google Circa 1997 (definitely not big data)

44

Google infrastructure circa 1997 could fit in a single room

45

Scaling up

▪What happens when a server doesn’t fit in a single room?

▪What happens if we need 1000X more servers?

46

Scaling up

▪What happens when a server doesn’t fit in a single room?

▪What happens if we need 1000X more servers?

▪ The cloud to the rescue!
– Also known as… data centers

46

Evolution of data centers

Evolution of data centers

● 1960's, 1970's: a few very large time-shared computers

Evolution of data centers

● 1960's, 1970's: a few very large time-shared computers

● 1980's, 1990's: heterogeneous collection of lots of smaller machines.

Evolution of data centers

● 1960's, 1970's: a few very large time-shared computers

● 1980's, 1990's: heterogeneous collection of lots of smaller machines.

● 2000-2020:

○ Data centers contain large numbers of nearly identical machines

○ Geographically spread around the world

○ Individual applications can use thousands of machines simultaneously

Evolution of data centers

● 1960's, 1970's: a few very large time-shared computers

● 1980's, 1990's: heterogeneous collection of lots of smaller machines.

● 2000-2020:

○ Data centers contain large numbers of nearly identical machines

○ Geographically spread around the world

○ Individual applications can use thousands of machines simultaneously

● 2020’s-today:

○ Accelerated construction of AI-specific datacenters

○ Clusters of datacenters in the same region to train massive models

Evolution of data centers

● 1960's, 1970's: a few very large time-shared computers

● 1980's, 1990's: heterogeneous collection of lots of smaller machines.

● 2000-2020:

○ Data centers contain large numbers of nearly identical machines

○ Geographically spread around the world

○ Individual applications can use thousands of machines simultaneously

● 2020’s-today:

○ Accelerated construction of AI-specific datacenters

○ Clusters of datacenters in the same region to train massive models

Evolution of data centers

● 1960's, 1970's: a few very large time-shared computers

● 1980's, 1990's: heterogeneous collection of lots of smaller machines.

● 2000-2020:

○ Data centers contain large numbers of nearly identical machines

○ Geographically spread around the world

○ Individual applications can use thousands of machines simultaneously

● 2020’s-today:

○ Accelerated construction of AI-specific datacenters

○ Clusters of datacenters in the same region to train massive models

● Companies consider data center technology a trade-secret, especially in the age of AI

○ Limited public discussion of the state of the art from industry leaders

Power is the biggest constraint

48

Core, Edge/Satellite, PoP

49

https://www.youtube.com/watch?v=2R-UVdw6thI

Core, Edge/Satellite, PoP

49

https://www.youtube.com/watch?v=2R-UVdw6thI

Datacenter building blocks

Rack

Rack

● Typically is 19 or 23 inches wide
● Typically 42 U
○ U or RU is a Rack Unit - 1.75 inches

● Slots:

Rack Slots

● Slots hold power distribution, servers, storage, networking equipment

● Typical server: 2U
○ 128-192 cores
○ DRAM: 256-512 GB

● Typical storage: 2U
● 30 drives

● Typical Network: 1U
○ 72 100Gb/s

Project Stargate

53

