Lecture 1

Computer Systems for Data Science
Topic 1

Course Introduction
Systems concepts

Intro to instructors
High-level overview
What is data science and big data”
Class goals and why should you care?
Class logistics
How the class is going to work?
Performance and systems rules of thumb
Intro to datacenters

Who Are We?

Course Instructors and TAs

Course Instructors and TAs

= |Instructor: Waqgar Aqgeel

Course Instructors and TAs

= |Instructor: Waqgar Aqgeel
= Head TAs: Krishen and Anouksha

Instructor: Waqgar Ageel
Head TAs: Krishen and Anouksha
TAs: Anisha, Vaishnavi, Sushmita, Arya

Instructor: Waqgar Ageel
Head TAs: Krishen and Anouksha
TAs: Anisha, Vaishnavi, Sushmita, Arya

All CAs have experience in databases and systems

What is Data Science and Big Data?

This was a system for big data

| 8N

Zeo 277,

//; /}&mﬁ Q. Amed

\)

/

"

——

o~ "
4
WP TR T e T
. T AT A B IR (BB 4 TR e ST

Py SO0

Data science systems were expensive

Z-ZH

@ompmc'r.r*Ep'rc‘nL_ /

A

€ Cromemco

Low-cost hard disk computers

are here

11 megabytes of hard disk and 64 kilobytes of fast RAM in a
Z80A computer for under $10K. Two floppy drives, too.
Naturally, it's from Cromemco.

It's a reality. In Cromemco’s new
Model Z-2H you get all of the above
and even more. With Cromemco you
get itall,

In this new Model Z-2H you get
not only a large-storage Winchester
hard disk drive but also two floppy
disk drives. In the hard disk drive you
get unprecedented storage capacity
at this price—11 megabytes unfor-
matted.

You get speed—Dboth in the 4 MHz
Z80A microprocessor and in the fast
64K RAM which has a chip access
time of anly 150 nanoseconds. You
get speed in the computer minimum
instruction execution time of 1 micro-
second. You get speed in the hard
disk transfer rate of 5.6 megabits/sec.

EXPANDABILITY
You get expandability, too. The
high-speed RAM can be expanded to
512 kilobytes if you wish,
And the computer has a full 12-slot
card cage you can use for additional
RAM and interface cards,

BROADEST SOFTWARE SUPPORT
With the Z-2H you also get the
broadest software support in the

microcomputer field. Software Cro-
memco is known for. Software like
this:

® Extended BASIC

e FORTRAN IV

® RATFOR (RATional FORtran)
¢ COBOL

® Z80 Macro Assembler

® Word Processing System

e Data Base Management

with more coming all the time,

SMALL, RUGGED, RELIABLE

With all its features the new Z-2H,
including its hard disk drive, is still
housed in just one small cabinet,

Mard disk drive 8t lower left can Do inters
changed jusi by sliding out and dlaconnecting
plug. Soven freo card slots are avalsbdlo
Z-2H Incluces printer interface card,

Cromemc

0. 25D r a t e d

Included in that cabinet, too, is
Cromemcoruggedness and reliability.
Cromemco is time-proved. Our
equipment is a survey winner for
reliability. Of course, there's Cro-
memco’s all-metal cabinet. Rugged,
solid. And, there's the heavy-duty
power supply (30A @ 8V, 15A @
+18 V, and 15A @ -18V) for cir-
cuitry you'll sooner or later want to
plug into those free card slots.

CALL NOW

With its high performance and low
price you KNOW this new Z-2H is
going to be a smash, Look into it
right now. Contact your Cromemco
computer store and get our sales
literature. Find out when you can
see it. Many dealers will be showing
the Z-2H soon—and you'll want to
be there when they do.

PRESENT CROMEMCO USERS
We've kept you in mind, too. Ask
about the new Model HDD Disk
Drive which can combing with your
present Cromemco computer to give
you up to 22 megabytes of disk

storage.

280 BERNARDO AVE, MOUNTAIN VIEW, CA 94040 « (415) 964-7400

Tomorrow's compulers now

CIRCLE 135 ON READER SERVICE CARD

Data science systems were expensive

Z-ZH

@o.vzpurc'rT*Ep‘rc‘m_ /

They are still expensive!

C3 Generative Al: Enterprise Edition info C View purchase options)

Pricing is based on the duration and terms of your contract with the vendor, and additional usage. You pay upfront or in
installments according to your contract terms with the vendor. This entitles you to a specified quantity of use for the contract
duration. Usage-based pricing is in effect for overages or additional usage not covered in the contract. These charges are

Low- COSt har‘ applied on top of the contract price. If you choose not to renew or replace your contract before the contract end date, access

to your entitlements will expire.

ar‘ Additional AWS infrastructure costs may apply. Use the AWS Pricing Calculator L? to estimate your infrastructure costs.
11 megabytes of hard disk

Z80A computer for unde
P Nawr;"y, it 1-month contract (1) o

It's a reality. In Cromemco’s new microcompu

Model Z-2H you get all of the above memco is kk Dimension Description Cost/month Overage cost
and even more. With Cromemco you this:
get itall, ® Exten
In this new Model Z-2H you get e FORT Production Pilot Fee $250,000 over a period of 3 months - required with all options $250,000.00 $0.55/unit
not only a large-storage Winchester ® RATF T
hard disk drive but also two floppy e COBC
disk drives. In the hard disk drive you e Z8O N
get unprecedented storage capacity ® Word Processing System TIO ¥, AU 1IN W TI0V] Ul LT
at this price—11 megabytes unfor- e Data Base Management cuitry you'll sooner or later want to
matted. with more coming all the time, plug into those free card slots.
You get speed—Dboth in the 4 MHz
Z80A microprocessor and in the fast SMALL, RUGGED, RELIABLE CALL NOW

64K RAM which has a chip access
time of anly 150 nanoseconds. You
get speed in the computer minimum
instruction execution time of 1 micro-
second. You get speed in the hard
disk transfer rate of 5.6 megabits/sec.

EXPANDABILITY
You get expandability, too. The
high-speed RAM can be expanded to
512 kilobytes if you wish,
And the computer has a full 12-slot
card cage you can use for additional
RAM and interface cards,

BROADEST SOFTWARE SUPPORT
With the Z-2H you also get the
broadest software support in the

With all its features the new Z-2H,
including its hard disk drive, is still
housed in just one small cabinet,

Mard disk drive 8t lower left can Do inters
changed jusi by sliding out and dlaconnecting
plug. Soven freo card slots aré avalabdlo
Z-2H Includes printer interface card,

Cromemc

0. 25D r a t e d

With its high performance and low
price you KNOW this new Z-2H is
going to be a smash, Look into it
right now. Contact your Cromemco
computer store and get our sales
literature. Find out when you can
see it. Many dealers will be showing
the Z-2H soon—and you'll want to
be there when they do.

PRESENT CROMEMCO USERS
We've kept you in mind, too. Ask
about the new Model HDD Disk
Drive which can combing with your
present Cromemco computer to give
you up to 22 megabytes of disk
storage.

280 BERNARDO AVE, MOUNTAIN VIEW, CA 94040 « (415) 964-7400

Tomorrow's compulers now

CIRCLE 135 ON READER SERVICE CARD

Today: data is cheap

100000

10000

1000

100

10

Capacity (GB)

0.1

001

0.001

= | I | | I | | I =
_) -
- y .
- X X -
- X X -
X
= XX X —
: o y E
B X X XX X x '
_ ") -
= O g =
- XOBK K ’ -
" Rcror aalliie .
_ . -
E'_ ’ ..-.. _g
- R :
—)% —
— x —_—
= X =
- X .
i X X i
- x X x .
- X X N X -
~ X X ¥ XX X -
= X)Oié X X —=
% -
| | | | | | | |
1980.1 1985.1 1990.1 1995.1 2000.1 2005.1 2010.1 2015.1 2020.1

Year

Today: data is cheap

100000 g | | | | | | | S
i -
A AAANA ,,/X X X
Overall Pick @ Seagate BarraCuda 8 TB Internal Hard Drive HDD - 3.5 Inch SATA 6 Gb/s, 5,400 RPM, 256 MB
Cache for Computer Desktop PC (STSO000DMZ04/004)
4.6 Wk K *xirwv (103.4K)

3K+ bought in past month

169"

vprime Today
BARRACUDA FREE delivery Today 6 PM - 11 PM

” COMPUTE 4

Add to cart

More Buying Choices
$159.88 (13+ used & new offers)

0.1 yd =

: pysr z

- X X)

=~ % * X X X -

oL E
0001 | | | | | | |

1980.1 1985.1 1990.1 1995.1 2000.1 2005.1 2010.1 2015.1 2020.1

Year

Where is data coming from!?

=Physical devices

Where is data coming from!?

=Physical devices

=Software logs

Where is data coming from!?

=Physical devices
=Software logs

=Phones

Where is data coming from!?

=Physical devices
=Software logs

=Phones

=GPS/Cars

Where is data coming from!?

=Physical devices
=Software logs
=Phones

=GPS/Cars

=Internet of Things

Where is data coming from!?

=Physical devices
=Software logs
=Phones
=«GPS/Cars
=Internet of Things

=Social media, website contents

reddit

Q U.S. INTERNATIONAL CANADA ESPANOL X m
Wednesday, January 21, 2026 Ehe New ﬁork @Omeg S&P 500 -2.06% +
Today's Paper |)

uUsS. v World ~ Business v Arts v Lifestyle ~ Opinion ¥ Video ~ Audio v+ Games ~ Cooking ~ Wirecutter v The Athletic ~
LIVE 1mago

Trump Opens Davos Speech by
Touting U.S. Economy and
Criticizing Europe

President Trump, addressing leaders in
Davos, highlighted his policies before
pivoting to criticism of Europe, saying it was
“not heading in the right direction.”

See more updates »

ANALYSIS

Canada Flexes on Global Stage With
an Eye to Its Own Survival

Prime Minister Mark Carney got a standing
ovation for starkly describing the end of Pax
Americana. He is looking for new allies to
help his country survive it.

5 MIN READ

Greenland Tensions 52454 .4
Rattle Global Markets -536.70
2 MIN READ

i

Doug Mills/The New York Times
UPDATES FROM OUR REPORTERS

Q Jim Tankersley

Trump’s explicit case here is that Germany invaded Denmark in World War |l, and the
United States had to defend Greenland but then gave it back. Trump calls America
“stupid” for that move and calls Denmark “ungrateful.”

Some Republicans Why Was Macron
Begin to Echo Trump’s Wearing Sunglasses at
Case to Acquire Davos?

Greenland 2 MIN READ

4 MIN READ

Winnie Au for The New York Times

Tour the Actress Kathleen
Chalfant’s Art-Filled Home

The theater legend and “Familiar Touch” star hosts
friends and artists in her expansive Brooklyn
brownstone.

10 Long Books for Are They Hot, or Is It
Long Winter Nights the ‘Australia Effect’?
5 MIN READ 4 MIN READ

What can we do with all this data?

= What video should | recommend to this user to view next?

16

16

What video should | recommend to this user to view next?

Does this MRI image of a breast contain a tumor?

16

What video should | recommend to this user to view next?

Does this MRI image of a breast contain a tumor?

Who is going to win the election?

What video should | recommend to this user to view next?

Does this MRI image of a breast contain a tumor?

Who is going to win the election?

Which cities in the US will have high incidence of flu in 2 weeks?

16

What video should | recommend to this user to view next?

Does this MRI image of a breast contain a tumor?

Who is going to win the election?

Which cities in the US will have high incidence of flu in 2 weeks?

|s the object across from the car a pedestrian?

16

17

"Extremely large data sets that may be analyzed computationally to reveal
patterns, trends, and associations, especially relating to human behavior and
interactions™ — Oxford Dictionary

What's an extremely large data set?
Fits on a single machine?
Fits on 10 machines?

What is this class about?

Our focus In this class: Computer Systems for Data Science

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class:

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class:

How are big data

systems designed?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class:

How are big data
systems designed?

How to store the data?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class:

How are big data
systems designed?

How to store the data?

How to query/analyze
the data”

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class:

How are big data
systems designed?

How to store the data?

How to query/analyze
the data?

How do we ensure
uptime/availability to
the data?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class:

How are big data
systems designed?

How to store the data?

How to query/analyze
the data?

How do we ensure
uptime/availability to
the data?

How do ML/AI systems
work?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class:

How are big data
systems designed?

How to store the data?

How to query/analyze
the data”

How do we ensure
uptime/availability to
the data?

How do ML/AI systems
work?

How to ensure privacy/
security/quality?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class: = Questions we won’t answer in this class:

How are big data
systems designed?

How to store the data?

How to query/analyze
the data”

How do we ensure
uptime/availability to
the data?

How do ML/AI systems
work"?

How to ensure privacy/
security/quality?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class: = Questions we won’t answer in this class:

How are big data
systems designed?

What algorithm should

we use”?

How to store the data?

How to query/analyze
the data”

How do we ensure
uptime/availability to
the data?

How do ML/AI systems
work"?

How to ensure privacy/
security/quality?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class: = Questions we won’t answer in this class:

How are big data What algorithm should
systems designed? we use?

How to store the data? How to train my own
ML models

How to query/analyze
the data”

How do we ensure
uptime/availability to
the data?

How do ML/AI systems
work"?

How to ensure privacy/
security/quality?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class: = Questions we won’t answer in this class:

How are big data What algorithm should
systems designed? we use?

How to store the data? How to train my own
ML models

How t /anal How do we explain/
il et debug ML models?

How do we ensure
uptime/availability to
the data?

How do ML/AI systems
work?

How to ensure privacy/
security/quality?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class: = Questions we won’t answer in this class:

How are big data What algorithm should
systems designed? we use?

How to store the data? How to train my own
ML models

How { | How do we explain/
ow ?hqeuggéé?”a Y debug ML models?

How do we ensure How can data be
uptime/availability to visualized?
the data?

How do ML/AI systems
work?

How to ensure privacy/
security/quality?

19

Our focus in this class: Computer Systems for Data Science

= Questions we will answer in this class: = Questions we won’t answer in this class:

How are big data What algorithm should
systems designed? we use?

How to store the data? How to train my own
ML models

How t /anal How do we explain/
e data? debug ML models?

How do we ensure How can data be
uptime/availability to visualized?
the data?

How do ML/AI systems What are the statistical/
work? mathematical foundations for

data science?

How to ensure privacy/
security/quality?

19

Course Objectives

20

Course Objectives

= Graduate-level course

20

20

Graduate-level course

Broad overview of cloud systems that are used in data science

Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)

Computer systems foundations (throughput vs. latency, scalability vs. performance)
Distributed systems for data scientists (sharding, fault tolerance)

Systems for machine learning (accelerators, distributed training/inference infrastructure)
Basic security for data scientists (encryption, privacy)

20

Graduate-level course

Broad overview of cloud systems that are used in data science

Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)

Computer systems foundations (throughput vs. latency, scalability vs. performance)
Distributed systems for data scientists (sharding, fault tolerance)

Systems for machine learning (accelerators, distributed training/inference infrastructure)
Basic security for data scientists (encryption, privacy)

Throughout the class we will focus on how commonly used and modern cloud-
based big data systems work (BigQuery, RocksDB,...)

20

Graduate-level course

Broad overview of cloud systems that are used in data science

Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)

Computer systems foundations (throughput vs. latency, scalability vs. performance)
Distributed systems for data scientists (sharding, fault tolerance)

Systems for machine learning (accelerators, distributed training/inference infrastructure)
Basic security for data scientists (encryption, privacy)

Throughout the class we will focus on how commonly used and modern cloud-
based big data systems work (BigQuery, RocksDB,...)

The class will give a broad and hopefully practical introduction to these topics
geared towards data scientists, but does not replace core CS/EE classes like OS,
databases, distributed systems, security, architecture, ML

20

Graduate-level course

Broad overview of cloud systems that are used in data science

Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)

Computer systems foundations (throughput vs. latency, scalability vs. performance)
Distributed systems for data scientists (sharding, fault tolerance)

Systems for machine learning (accelerators, distributed training/inference infrastructure)
Basic security for data scientists (encryption, privacy)

Throughout the class we will focus on how commonly used and modern cloud-
based big data systems work (BigQuery, RocksDB,...)

The class will give a broad and hopefully practical introduction to these topics
geared towards data scientists, but does not replace core CS/EE classes like OS,
databases, distributed systems, security, architecture, ML

You come from diverse backgrounds: Some of the content will be repetitive for
students who have taken the classes above, like databases, systems, networks etc.

20

Graduate-level course

Broad overview of cloud systems that are used in data science

Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)

Computer systems foundations (throughput vs. latency, scalability vs. performance)
Distributed systems for data scientists (sharding, fault tolerance)

Systems for machine learning (accelerators, distributed training/inference infrastructure)
Basic security for data scientists (encryption, privacy)

Throughout the class we will focus on how commonly used and modern cloud-
based big data systems work (BigQuery, RocksDB,...)

The class will give a broad and hopefully practical introduction to these topics
geared towards data scientists, but does not replace core CS/EE classes like OS,
databases, distributed systems, security, architecture, ML

You come from diverse backgrounds: Some of the content will be repetitive for
students who have taken the classes above, like databases, systems, networks etc.

Required background
Programming experience with Python
Both programming assignments will be submitted in Python

Course Administration and Grading

21

Course Administration and Grading

= All materials, assignments, etc. posted on course website
= Show locally, link to come

21

21

All materials, assignments, etc. posted on course website
Show locally, link to come

Only one section

21

All materials, assignments, etc. posted on course website
Show locally, link to come

Only one section

Announcement/Q&A will be posted on Ed

21

All materials, assignments, etc. posted on course website
Show locally, link to come

Only one section
Announcement/Q&A will be posted on Ed

Lecture Materials

Lecture slides
No textbook

21

All materials, assignments, etc. posted on course website
Show locally, link to come

Only one section

Announcement/Q&A will be posted on Ed

Lecture Materials

Lecture slides
No textbook

Homework, assignments, exams
Programming assignment 2: (5%)
Written assignment 2: systems and databases (5%)
Programming assignment 3: Indexing and filtering (10%)

Written assignment 4: distributed systems, ML, security (5%)
In-person midterm (25%)

In-person final exam (50%)

All materials, assignments, etc. posted on course website
Show locally, link to come

Only one section

Announcement/Q&A will be posted on Ed

Lecture Materials

Lecture slides
No textbook

Homework, assignments, exams
Programming assignment 2: (5%)
Written assignment 2: systems and databases (5%)
Programming assignment 3: Indexing and filtering (10%)

Written assignment 4: distributed systems, ML, security (5%)
In-person midterm (25%)

In-person final exam (50%)

All assignments will be turned in online

21

21

All materials, assignments, etc. posted on course website
Show locally, link to come

Only one section

Announcement/Q&A will be posted on Ed

Lecture Materials

Lecture slides
No textbook

Homework, assignments, exams
Programming assignment 2: (5%)
Written assignment 2: systems and databases (5%)
Programming assignment 3: Indexing and filtering (10%)

Written assignment 4: distributed systems, ML, security (5%)
In-person midterm (25%)

In-person final exam (50%)

All assignments will be turned in online

All classes streamed online (Zoom) and recorded (available on CourseWorks)
No attendance required

Programming Assignments

22

Programming Assignments

= 2 programming assignments
— Both done individually

22

22

2 programming assignments
Both done individually

Programming assignments are in Python

Brush up on your Python if you are rusty: many resources online
Most commonly-used language for data scientists

22

2 programming assignments
Both done individually

Programming assignments are in Python

Brush up on your Python if you are rusty: many resources online
Most commonly-used language for data scientists

Programming assignment 1 done in Google Cloud (GCP)

Goal: familiarize yourself with working in public cloud environment
AWS / Azure /| GCP are similar
Many systems and deployment details are hidden / automated (but we won’t ignore them!)
We will be focusing on systems-level problems, not on algorithms

We will provide GCP credits, if you run out contact us
If you reach $10 of credits or less, please contact: Arya Shidore
But be careful not to spend too many!

22

2 programming assignments
Both done individually

Programming assignments are in Python

Brush up on your Python if you are rusty: many resources online
Most commonly-used language for data scientists

Programming assignment 1 done in Google Cloud (GCP)

Goal: familiarize yourself with working in public cloud environment
AWS / Azure / GCP are similar
Many systems and deployment details are hidden / automated (but we won’t ignore them!)
We will be focusing on systems-level problems, not on algorithms

We will provide GCP credits, if you run out contact us
If you reach $10 of credits or less, please contact: Arya Shidore
But be careful not to spend too many!

Programming assignment goals
Assignment 1: BigQuery
Learning to use SQL on a big data set

Assignment 3: Indexing and filtering data structures
Understanding how real-world data systems data structures work, strengthen Python skills

23

Office hours:

CAs will hold office hours every weekday over Google Meet
Course calendar will have the meeting link: all office hours will use the same link

Ed

A CA is guaranteed to be available on Ed every weekday (when the school is open) from
9AM — 5PM. We will try to answer your questions as fast as possible

Submit your assignments on time!
Homework submission will be on Gradescope
If you do not submit your HW on time, your grade will be 0%
We will give you plenty of time for the assignments, don’t wait until the last minute!
You can resubmit homework as many times as you want, until the deadline

Tentative Contents and Syllabus

24

24

Computer systems and performance rules of thumb
Latency vs. throughput
Amdahl’'s law
Back-of-the-envelope systems math
Performance bottlenecks

24

Computer systems and performance rules of thumb
Latency vs. throughput
Amdahl’'s law
Back-of-the-envelope systems math
Performance bottlenecks

Data centers
What is a data center?
Data center failures
Achieving reliability with smart software
Core, Edge/Sateliite, PoP
The rise of Al data centers

24

Computer systems and performance rules of thumb
Latency vs. throughput
Amdahl’'s law
Back-of-the-envelope systems math
Performance bottlenecks

Data centers
What is a data center?
Data center failures
Achieving reliability with smart software
Core, Edge/Sateliite, PoP
The rise of Al data centers

Relational model and SQL
Relational model and SQL
SELECT, FROM, WHERE
GROUPBY
JOINSs
Nested queries
Transactions
ACID
OLAP vs. OLTP, SQL vs. NoSQL

Logging

25

Storage systems
The memory hierarchy
Storage technologies primer
Distributed file systems
Indexing
Filters
Caching
Storage engines
In-memory key-value stores

25

Storage systems
The memory hierarchy
Storage technologies primer
Distributed file systems
Indexing
Filters
Caching
Storage engines
In-memory key-value stores

Distributed online databases (OLTP)
2 Phase Commit
Locking
Sharding
Fault tolerance
Replication and consensus

25

Storage systems
The memory hierarchy
Storage technologies primer
Distributed file systems
Indexing
Filters
Caching
Storage engines
In-memory key-value stores

Distributed online databases (OLTP)
2 Phase Commit
Locking
Sharding
Fault tolerance
Replication and consensus

Analytics (OLAP)
Mapreduce computing model
Stragglers
Lineage
Fault tolerance in distributed analytics: lineage
Streaming computing model

Tentative Contents and Syllabus

26

Tentative Contents and Syllabus

— Global serving infra
— Layered load balancing

— Multithreading
— GPUs

26

26

Global serving infra
Layered load balancing
Multithreading
GPUs

Single-node ML
GPUs and ML accelerators
Kernels, ML compilation
ML single node bottlenecks
ML memory

Global serving infra
Layered load balancing
Multithreading
GPUs

Single-node ML
GPUs and ML accelerators
Kernels, ML compilation
ML single node bottlenecks
ML memory

Distributed ML
ML network
Distributed training
Checkpointing
Inference systems challenges

26

Global serving infra
Layered load balancing
Multithreading
GPUs

Single-node ML
GPUs and ML accelerators
Kernels, ML compilation
ML single node bottlenecks
ML memory

Distributed ML
ML network
Distributed training
Checkpointing
Inference systems challenges

Security and privacy
Security of big data systems
Privacy consideration
Data compliance and access control

26

26

Global serving infra
Layered load balancing
Multithreading
GPUs

Single-node ML
GPUs and ML accelerators
Kernels, ML compilation
ML single node bottlenecks
ML memory

Distributed ML
ML network
Distributed training
Checkpointing
Inference systems challenges

Security and privacy
Security of big data systems
Privacy consideration
Data compliance and access control

Observability
Data monitoring
Production metrics as a big data system
Data quality

Adapted from David Patterson and Kathryn McKinley

Performance Concepts and Rules of Thumb

Performance Evaluation

28

Performance Evaluation

= Metric: something we measure

28

28

Metric: something we measure

Goal: evaluate how good/bad our computer system is performing

28

Metric: something we measure
Goal: evaluate how good/bad our computer system is performing

Examples:
Power consumed by our database
CPU cost of running a web backend
Average time it takes to render a user page

How many users can we support at the same time

28

Metric: something we measure
Goal: evaluate how good/bad our computer system is performing

Examples:
Power consumed by our database
CPU cost of running a web backend
Average time it takes to render a user page

How many users can we support at the same time

Metrics allow us to compare two computer systems

28

Metric: something we measure
Goal: evaluate how good/bad our computer system is performing

Examples:
Power consumed by our database
CPU cost of running a web backend
Average time it takes to render a user page

How many users can we support at the same time

Metrics allow us to compare two computer systems

They are crucial for proving improvements, diagnosing regressions

Tradeoff: latency vs. throughput

29

Tradeoff: latency vs. throughput

= Pizza delivery example
— Do you want your pizza to be fresh?
— Do you want your pizza to be cheap?

29

29

Pizza delivery example
Do you want your pizza to be fresh?
Do you want your pizza to be cheap?

Why do these conflict?

29

Pizza delivery example
Do you want your pizza to be fresh?
Do you want your pizza to be cheap?

Why do these conflict?

Two different strategies for pizza company
Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as
possible)

29

Pizza delivery example
Do you want your pizza to be fresh?
Do you want your pizza to be cheap?

Why do these conflict?

Two different strategies for pizza company
Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as
possible)

29

Pizza delivery example
Do you want your pizza to be fresh?
Do you want your pizza to be cheap?

Why do these conflict?

Two different strategies for pizza company
Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

Latency = execution time for a single task (length of the pipe)

29

Pizza delivery example
Do you want your pizza to be fresh?
Do you want your pizza to be cheap?

Why do these conflict?

Two different strategies for pizza company
Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

Latency = execution time for a single task (length of the pipe)

Throughput = number of tasks per unit time (width of the pipe)

29

Pizza delivery example
Do you want your pizza to be fresh?
Do you want your pizza to be cheap?

Why do these conflict?

Two different strategies for pizza company
Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

Latency = execution time for a single task (length of the pipe)

Throughput = number of tasks per unit time (width of the pipe)

29

Pizza delivery example
Do you want your pizza to be fresh?
Do you want your pizza to be cheap?

Why do these conflict?

Two different strategies for pizza company
Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as

possible)

Latency = execution time for a single task (length of the pipe)

Throughput = number of tasks per unit time (width of the pipe)

A more relevant example:
Latency requirement: Assuming cars drive at 65mph, so self driving car needs to recognize
an object in 0.1 seconds
Throughput requirement: Object recognition system needs to process 1 million object
recognition tasks every second to support 10,000 cars simultaneously

Latency vs. Throughput is often a trade off

(pmph)

Boeing 747 6.5 hours 610 mph 286,700
Concorde 3 hours 1350 mph 132 178,200

. Which plane has higher performance?

30

Latency vs. Throughput is often a trade off

(pmph)

Boeing 747 6.5 hours 610 mph 286,700
Concorde 3 hours 1350 mph 132 178,200
. Which plane has higher performance?

= Time to do the task (execution time)
— Latency, execution time, response time

= Tasks per day, hour, week, sec (performance)
— Throughput, bandwidth, operations per second

= Depends on what YOU want

30

Definitions

31

31

Performance is in units of things-per-second
Bigger is better

31

Performance is in units of things-per-second
Bigger is better

Response time of a system Y running Z

performance(Y) =
execution time (Z onY)

31

Performance is in units of things-per-second
Bigger is better

Response time of a system Y running Z

performance(Y) =
execution time (Z onY)

Throughput of system Y running many requests
number o f requests

performance(Y) = —
unit time

31

Performance is in units of things-per-second
Bigger is better

Response time of a system Y running Z

performance(Y) =
execution time (Z onY)

Throughput of system Y running many requests
number o f requests

performance(Y) = —
unit time

“System X is n times faster than Y” means:
per formance(X)

n =
per formance(Y)

How do we improve performance”?

32

32

Suppose we have a database that processes two types of queries:
Query A finishes in 100 seconds
Query B finishes in 2 seconds

We want better performance
Which query should we improve?

The answer: it depends! (a pretty lousy answer)

33

Make a change to the system

Measure how much faster/slower it is

Execution time be fore change

Speedup = —
Execution time a fter change

Speedup when we know details about the change

34

Speedup when we know details about the change

= Performance improvement depends on:
— How good is the enhancement? (factor S)
— How often is it used? (factor p)
—Who uses it? (business)

34

34

Performance improvement depends on:
How good is the enhancement? (factor S)
How often is it used? (factor p)

Who uses it? (business)

Speedup due to enhancement E:

Execution time without E Per formance with E
Speedup(E) = — . = .
Execution time with E =~ Per formance without E
ExTime,,, , = ExTime,; * (1 — p) +%
Explanation: _
(1 - p) is the fraction of operations that are not affected by E
P

G IS the fraction of operations that are affected by E, with the enhancement factor

ExTime,,, 1
Speedup(E) = - = >
ExTime,,, (1 — p) + <

Performance improvement depends on:
How good is the enhancement? (factor S)
How often is it used? (factor p)

Who uses it? (business)

Speedup due to enhancement E:

Execution time without E Per formance with E
Speedup(E) = — . = .
Execution time with E =~ Per formance without E
ExTime,,, , = ExTime,; * (1 — p) +%
Explanation: _
(1 - p) is the fraction of operations that are not affected by E
P

G IS the fraction of operations that are affected by E, with the enhancement factor

ExTime,,, 1
Speedup(E) = - = >
ExTime,,, (1 — p) + <

It's usually less formal. Most metrics either obviously matter or obviously don't.

34

34

Performance improvement depends on:
How good is the enhancement? (factor S)
How often is it used? (factor p)

Who uses it? (business)

Speedup due to enhancement E:

Execution time without E Per formance with E
Speedup(E) = — . = .
Execution time with E =~ Per formance without E
ExTime,,, , = ExTime,; * (1 — p) +%
Explanation: _
(1 - p) is the fraction of operations that are not affected by E
P

G IS the fraction of operations that are affected by E, with the enhancement factor

ExTime,,, 1
Speedup(E) = - = >
ExTime,,, (1 — p) + <

It's usually less formal. Most metrics either obviously matter or obviously don't.

Customers are either complaining, or they are not

Amdahl’s law: example

35

Amdahl’s law: example

= We built a new database that speeds up aggregate queries by 2x! Hurray!

35

35

We built a new database that speeds up aggregate queries by 2x! Hurray!

But... only 10% of queries are aggregate queries

We built a new database that speeds up aggregate queries by 2x! Hurray!

But... only 10% of queries are aggregate queries

ExTime,,, , = ExTime, * (1 — p) +%

We built a new database that speeds up aggregate queries by 2x! Hurray!

But... only 10% of queries are aggregate queries

ExTime,,, , = ExTime, * (1 — p) +%

0.1
ExTime,,, = ExTime, % |0.9 4 5

We built a new database that speeds up aggregate queries by 2x! Hurray!

But... only 10% of queries are aggregate queries

ExTime,,, , = ExTime, * (1 — p) +%

0.1
ExTime,,, = ExTime, % |0.9 4 | = 0.95 % ExTime,,,
1
Speedup,,..,, = —— = 1.053 > only 5.3% overall speedup ®

0.95

We built a new database that speeds up aggregate queries by 2x! Hurray!

But... only 10% of queries are aggregate queries

ExTime,,, = ExTime,, * (1 — p) +%
0.1
ExTime,,, = ExTime, % |0.9 4 | = 0.95 % ExTime,,,
1
Speedup,,..,, = —— = 1.053 > only 5.3% overall speedup ®

0.95

Amdahl’s law: speedup bounded by

We built a new database that speeds up aggregate queries by 2x! Hurray!

But... only 10% of queries are aggregate queries

ExTime,,, = ExTime,, * (1 — p) +%
0.1
ExTime,,, = ExTime, % |0.9 4 | = 0.95 % ExTime,,,
1
Speedup, .., = e 1.053 = only 5.3% overall speedup ®

Amdahl’s law: speedup bounded by
1

fraction o f time not enhanced

Amdahl’s law: example

= We built a new database that speeds up aggregate queries by 2x! Hurray!

= But... only 10% of queries are aggregate queries

_ ExTime,,, , = ExTime,, * (1 — p) + —

. ExTime,,,, = ExTi Amdahl’s law in simple terms:

Make the common case fast!

1

. Speedup, .., = 005

= Amdahl’s law: speedup bounded by

1

fraction o f time not enhanced

35

Amdahl’s law: example

= We built a new database that speeds up aggregate queries by 2x! Hurray!

= But... only 10% of queries are aggregate queries

_ ExTime,,, , = ExTime,, * (1 — p) + —

. ExTime,,,, = ExTi Amdahl’s law in simple terms:

Make the common case fast!

1

. Speedup, .., = 005

= Amdahl’s law: speedup bounded by

1

fraction o f time not enhanced

= Even if aggregated queries could be completed in zero time, our maximum speedup would be:

35

Amdahl’s law: example

= We built a new database that speeds up aggregate queries by 2x! Hurray!

= But... only 10% of queries are aggregate queries

_ ExTime,,, , = ExTime,, * (1 — p) + —

. ExTime,,,, = ExTi Amdahl’s law in simple terms:

Make the common case fast!

1

. Speedup, .., = 005

= Amdahl’s law: speedup bounded by

1

fraction o f time not enhanced

= Even if aggregated queries could be completed in zero time, our maximum speedup would be:

1
. Speedup, . = 00 1.111

35

Amdahl’s law: example

= We built a new database that speeds up aggregate queries by 2x! Hurray!

= But... only 10% of queries are aggregate queries

_ ExTime,,, , = ExTime,, * (1 — p) + —

. ExTime,,,, = ExTi Amdahl’s law in simple terms:

Make the common case fast!

1

. Speedup, .., = 0.93

= Amdahl’s law: speedup bounded by

1

fraction o f time not enhanced

= Even if aggregated queries could be completed in zero time, our maximum speedup would be:
1

. Speedup, . = 00 1.111

= More useful for parallel programming bottlenecks, but can be adapted here.

35

Useful back-of-the-envelope latency numbers (all rough estimates)

36

Useful back-of-the-envelope latency numbers (all rough estimates)

= Time measurements:
— Nanosecond (ns): 1/1,000,000,000 second
— Microsecond (us): 1/1,000,000 second
— Millisecond (ms): 1/1000 second

36

Useful back-of-the-envelope latency numbers (all rough estimates)

= Time measurements:
— Nanosecond (ns): 1/1,000,000,000 second
— Microsecond (us): 1/1,000,000 second
— Millisecond (ms): 1/1000 second

36

Useful back-of-the-envelope latency numbers (all rough estimates)

= Time measurements:
— Nanosecond (ns): 1/1,000,000,000 second
— Microsecond (us): 1/1,000,000 second
— Millisecond (ms): 1/1000 second

= CPU cache access: 1ns

36

36

Time measurements:

Nanosecond (ns): 1/1,000,000,000 second
Microsecond (us): 1/1,000,000 second
Millisecond (ms): 1/1000 second

CPU cache access: 1ns
Memory access: 100ns

Read a small object from a random location on a local flash drive: 20,000ns, 20us

36

Time measurements:

Nanosecond (ns): 1/1,000,000,000 second
Microsecond (us): 1/1,000,000 second
Millisecond (ms): 1/1000 second

CPU cache access: 1ns
Memory access: 100ns
Read a small object from a random location on a local flash drive: 20,000ns, 20us

Read a small object within the same network in a data center: 100,000ns, 100us

36

Time measurements:

Nanosecond (ns): 1/1,000,000,000 second
Microsecond (us): 1/1,000,000 second
Millisecond (ms): 1/1000 second

CPU cache access: 1ns

Memory access: 100ns

Read a small object from a random location on a local flash drive: 20,000ns, 20us
Read a small object within the same network in a data center: 100,000ns, 100us

Run a SQL query on a flash database: 1,000,000ns, 1ms

36

Time measurements:

Nanosecond (ns): 1/1,000,000,000 second
Microsecond (us): 1/1,000,000 second
Millisecond (ms): 1/1000 second

CPU cache access: 1ns

Memory access: 100ns

Read a small object from a random location on a local flash drive: 20,000ns, 20us
Read a small object within the same network in a data center: 100,000ns, 100us
Run a SQL query on a flash database: 1,000,000ns, 1ms

Read a small random object from magnetic disk: 10,000,000ns, 10ms

36

Time measurements:

Nanosecond (ns): 1/1,000,000,000 second
Microsecond (us): 1/1,000,000 second
Millisecond (ms): 1/1000 second

CPU cache access: 1ns

Memory access: 100ns

Read a small object from a random location on a local flash drive: 20,000ns, 20us
Read a small object within the same network in a data center: 100,000ns, 100us
Run a SQL query on a flash database: 1,000,000ns, 1ms

Read a small random object from magnetic disk: 10,000,000ns, 10ms

Run a SQL query on a disk database: 20,000,000ns, 20ms

36

Time measurements:

Nanosecond (ns): 1/1,000,000,000 second
Microsecond (us): 1/1,000,000 second
Millisecond (ms): 1/1000 second

CPU cache access: 1ns

Memory access: 100ns

Read a small object from a random location on a local flash drive: 20,000ns, 20us
Read a small object within the same network in a data center: 100,000ns, 100us
Run a SQL query on a flash database: 1,000,000ns, 1ms

Read a small random object from magnetic disk: 10,000,000ns, 10ms

Run a SQL query on a disk database: 20,000,000ns, 20ms

Roundtrip time over the internet: 30,000,000us, 30ms
Bounded by the speed of light! Roundtrip light speed from NYC to Beijing is ~150ms

Latency Mumbers Everyg Programmer JShould Know

Hmins

™ L1 cache reference: 8.5ns

N
B MW Granch mispredict: Sns
[

[] |
BN L2 cache reference: 7ns
[] |
[|

EEEEN
EEEER
HENENEN HMutex lock/unlock: 25ns
EEEENR
EEEER

37

B Main memory reference: 168 ns

EEEEN_
T TT T Bl

EEEEN

EEEEN

EEEEN .) ,
EEEEE Compress 1KB with Zippy: 3ps
EEEEN

EEEEN

=W 18ps

BN Send 1KB over 1Gbps network: 18ps

EEN

=== 33D random read C(1Cb/s 330D,
T 15aps

EEN

EEEEN

EEEEN

EEEEE Read 1ME sequentially
EEEEE from memory: 298 ps
EEEER

EEEEN

EEEER

EEEEN

EEEER

BENENEN Round trip in same
BENNEN datacenter: S88 ps
EEEEN

EEEERN

EEEEN

EEEEN
EEEEEEEEEN
EEEEEEEEER
EEEEEEEEEN
EEEEEEEEER
EEEEEEEEENR =B ims
EEEEEEEEERN
EEEEEREEEEEN
EEEEEEEEERN
EEEEEEEEENR
EEEEEEEEERN

B Read 1MB sequentially
from33D: 1ms

EEEEE Disk seek: 18ms

EEEEN

BENNEN Read 1ME sequentially
BENENEN from disk: 28 ms
EEEEN

EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEENENENENENEN Packet
BEEREEEEEENEN roundtrip
EEEEEEEENENCA to
BEEEEEEENEN Netherlands:
EEEEEEEEEN 158ms
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN

Source; https)//aist. github.com/ 228413832

How can we use these numbers? A database example

38

38

Scenario:
A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name
using their CUID).

It first checks if the object is already saved locally, either in the CPU cache or in memory:
10% chance it's in the CPU cache
If not, 20% chance it's in memory

If not saved locally, it fetches it from a database from within the same network

38

Scenario:
A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name
using their CUID).

It first checks if the object is already saved locally, either in the CPU cache or in memory:
10% chance it's in the CPU cache
If not, 20% chance it's in memory

If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:

38

Scenario:
A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name
using their CUID).

It first checks if the object is already saved locally, either in the CPU cache or in memory:
10% chance it's in the CPU cache
If not, 20% chance it's in memory

If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:
Prob(CPU) * cache latency +

38

Scenario:

A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name
using their CUID).

It first checks if the object is already saved locally, either in the CPU cache or in memory:
10% chance it's in the CPU cache
If not, 20% chance it's in memory

If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:
Prob(CPU) * cache latency +

Prob(not in CPU) * (Prob (memory) * memory_latency +

38

Scenario:

A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name
using their CUID).

It first checks if the object is already saved locally, either in the CPU cache or in memory:
10% chance it's in the CPU cache
If not, 20% chance it's in memory

If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:
Prob(CPU) * cache latency +

Prob(not in CPU) * (Prob (memory) * memory_latency +

Prob (not in memory) * database_latency)

38

Scenario:

A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name
using their CUID).

It first checks if the object is already saved locally, either in the CPU cache or in memory:
10% chance it's in the CPU cache
If not, 20% chance it's in memory

If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:
Prob(CPU) * cache latency +

Prob(not in CPU) * (Prob (memory) * memory_latency +

Prob (not in memory) * database_latency)

0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
=0.1ns + 18ns + 0.72 * database latency

38

Scenario:

A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name
using their CUID).

It first checks if the object is already saved locally, either in the CPU cache or in memory:
10% chance it's in the CPU cache
If not, 20% chance it's in memory

If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:
Prob(CPU) * cache latency +

Prob(not in CPU) * (Prob (memory) * memory_latency +

Prob (not in memory) * database_latency)

0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
=0.1ns + 18ns + 0.72 * database latency

Remote database latency = network latency + database latency = 1,100,000ns

38

Scenario:
A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name

using their CUID).

It first checks if the object is already saved locally, either in the CPU cache or in memory:
10% chance it's in the CPU cache
If not, 20% chance it's in memory

If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:
Prob(CPU) * cache latency +

Prob(not in CPU) * (Prob (memory) * memory_latency +

Prob (not in memory) * database_latency)

0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
=0.1ns + 18ns + 0.72 * database latency

Remote database latency = network latency + database latency = 1,100,000ns

Total average latency = 792,018ns or 790us

38

Scenario:
A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name

using their CUID).
It first checks if the object is already saved locally, either in the CPU cache or in memory:

10% chance it's in the CPU cache
If not, 20% chance it's in memory
If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:
Prob(CPU) * cache latency +

Prob(not in CPU) * (Prob (memory) * memory_latency +

Prob (not in memory) * database_latency)

0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
=0.1ns + 18ns + 0.72 * database latency

Remote database latency = network latency + database latency = 1,100,000ns

Total average latency = 792,018ns or 790us

Total average latency ~= 0.72 * not in memory latency = 792,000ns

38

Scenario:
A user application running in the cloud needs to read a small object (e.g., lookup the student’'s name

using their CUID).
It first checks if the object is already saved locally, either in the CPU cache or in memory:

10% chance it’s in the CPU cache
If not, 20% chance it's in memory

If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:
Prob(CPU) * cache latency +

Prob(not in CPU) * (Prob (memory) * memory_latency +

Prob (not in memory) * database_latency)

0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
=0.1ns + 18ns + 0.72 * database latency

Remote database latency = network latency + database latency = 1,100,000ns
Total average latency = 792,018ns or 790us
Total average latency ~= 0.72 * not in memory latency = 792,000ns

- Since 72% requests go to the database and it's so slow, its latency dominates the
total latency

Disk vs. Flash, Cost vs. Performance

39

Disk vs. Flash, Cost vs. Performance

= Your app needs a cloud database that runs SQL queries

39

39

Your app needs a cloud database that runs SQL queries

You are considering running the database on two types of storage devices: flash vs. magnetic disk
You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

39

Your app needs a cloud database that runs SQL queries

You are considering running the database on two types of storage devices: flash vs. magnetic disk
You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)

39

Your app needs a cloud database that runs SQL queries

You are considering running the database on two types of storage devices: flash vs. magnetic disk
You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)

You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)

39

Your app needs a cloud database that runs SQL queries

You are considering running the database on two types of storage devices: flash vs. magnetic disk
You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)
You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)

Scenario 1: Your user queries involve only a single database access in the cloud (over the Internet)
Latency with flash database: 101ms
Latency with disk database: 110ms

39

Your app needs a cloud database that runs SQL queries

You are considering running the database on two types of storage devices: flash vs. magnetic disk
You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)
You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)

Scenario 1: Your user queries involve only a single database access in the cloud (over the Internet)
Latency with flash database: 101ms
Latency with disk database: 110ms

Scenario 2: The app requires getting an initial response from the cloud database, then a user input, and

then another cloud database request
Latency with flash database: 202ms
Latency with disk database: 220ms

Scenario 3: The app requires 20 sequential databases accesses within the cloud to compute a single user

guery, and then it can return a response
Latency with flash database: 120ms
Latency with disk database: 300ms

40

My application is seeing an average latency of 200ms, where is the bottleneck?

A few guiding questions:
What systems does the web page need to access? Which networks does it need to
traverse?
Start from the most common case + highest latency

40

My application is seeing an average latency of 200ms, where is the bottleneck?

A few guiding questions:
What systems does the web page need to access? Which networks does it need to
traverse?
Start from the most common case + highest latency

Example:
Application needs to go through the Internet once ~ 1 * 100ms
Hits a server that first checks if the request is saved on memory cache in the cloud ~
0.2 * 100us

If not (80% of the time), goes over the network and accesses a single disk database ~
0.8 * 10ms

40

My application is seeing an average latency of 200ms, where is the bottleneck?

A few guiding questions:
What systems does the web page need to access? Which networks does it need to
traverse?
Start from the most common case + highest latency

Example:
Application needs to go through the Internet once ~ 1 * 100ms
Hits a server that first checks if the request is saved on memory cache in the cloud ~
0.2 * 100us
If not (80% of the time), goes over the network and accesses a single disk database ~
0.8 *10ms

Guess 1: Internet slowdown (highest latency)

40

My application is seeing an average latency of 200ms, where is the bottleneck?

A few guiding questions:
What systems does the web page need to access? Which networks does it need to
traverse?
Start from the most common case + highest latency

Example:
Application needs to go through the Internet once ~ 1 * 100ms
Hits a server that first checks if the request is saved on memory cache in the cloud ~
0.2 * 100us
If not (80% of the time), goes over the network and accesses a single disk database ~
0.8 *10ms

Guess 1: Internet slowdown (highest latency)

Guess 2: database slowdown (second highest latency)

Latency and throughput: two important metrics, sometimes correlate,
but often do not

Amdanhl’s law: optimize the common case

Computer systems almost always involve a performance vs. cost trade
off

41

Adapted from Mendel Rosenblum and Jeff Dean

The Infrastructure of Big Data

Motivating example: Google web search (1999 vs. 2010)

43

Motivating example: Google web search (1999 vs. 2010)

= # docs: tens of millions to tens of billions ~1000X

43

Motivating example: Google web search (1999 vs. 2010)

= # docs: tens of millions to tens of billions ~1000X

= Queries processed/day: ~1000X

43

Motivating example: Google web search (1999 vs. 2010)

= # docs: tens of millions to tens of billions ~1000X
= Queries processed/day: ~1000X

= Per doc info In index: ~3X

43

43

docs: tens of millions to tens of billions
Queries processed/day:

Per doc info In index:

Update latency: months to tens of seconds

~1000X
~1000X
~3X
~50000X

43

docs: tens of millions to tens of billions
Queries processed/day:

Per doc info in index:

Update latency: months to tens of seconds

Average query latency: 1 seconds to 0.2 seconds

~1000X
~1000X
~3X
~50000X
~5X

43

docs: tens of millions to tens of billions
Queries processed/day:

Per doc info in index:

Update latency: months to tens of seconds

Average query latency: 1 seconds to 0.2 seconds

More machines * faster machines:

~1000X

~1000X

~3X
~50000X
~5X

~1000X

Google Circa 1997 (definitely not big data)

44

Google infrastructure circa 1997 could fit in a single room

query

Index servers Doc servers

| Index shards |

D,| [D,] - [D,

45

46

What happens when a server doesn't fit in a single room?

What happens if we need 1000X more servers?

46

What happens when a server doesn't fit in a single room?

What happens if we need 1000X more servers?

The cloud to the rescue!
Also known as... data centers

Evolution of data centers

Evolution of data centers

e 1960's, 1970's: a few very large time-shared computers

Evolution of data centers

e 1960's, 1970's: a few very large time-shared computers

e 1980's, 1990's: heterogeneous collection of lots of smaller machines.

1960's, 1970's: a few very large time-shared computers

1980's, 1990's: heterogeneous collection of lots of smaller machines.

2000-2020:
Data centers contain large numbers of nearly identical machines
Geographically spread around the world

Individual applications can use thousands of machines simultaneously

1960's, 1970's: a few very large time-shared computers

1980's, 1990's: heterogeneous collection of lots of smaller machines.

2000-2020:
Data centers contain large numbers of nearly identical machines
Geographically spread around the world
Individual applications can use thousands of machines simultaneously
2020’s-today:
Accelerated construction of Al-specific datacenters

Clusters of datacenters in the same region to train massive models

1960's, 1970's: a few very large time-shared computers

1980's, 1990's: heterogeneous collection of lots of smaller machines.

2000-2020:
Data centers contain large numbers of nearly identical machines
Geographically spread around the world
Individual applications can use thousands of machines simultaneously
2020’s-today:
Accelerated construction of Al-specific datacenters

Clusters of datacenters in the same region to train massive models

1960's, 1970's: a few very large time-shared computers

1980's, 1990's: heterogeneous collection of lots of smaller machines.

2000-2020:
Data centers contain large numbers of nearly identical machines
Geographically spread around the world
Individual applications can use thousands of machines simultaneously
2020’s-today:
Accelerated construction of Al-specific datacenters

Clusters of datacenters in the same region to train massive models

Companies consider data center technology a trade-secret, especially in the age of Al

Limited public discussion of the state of the art from industry leaders

Power Is the biggest constraint

600 |
% OF 2030
ANNUAL ELECTRICITY
500 SCENARIO GROWTH RATE CONSUMPTION
% Low growth 3.7% 4.6%
E 400 — Moderate growth 5% 501 S A N R ' | |
é High growth 10% 6.8%
o)
£ 300 Higher growth 15% 91%
2
S w
>2000—— T
£ |
= Average historical data
@ 100
R P —o—
0
2000 2005 2010 2015 2020 2025 2030

Figure ES-1. Projections of potential electricity consumption by U.S. data centers: 2023-2030 . % of 2030 electricity consumption
projections assume that all other (non-data center) load increases at 1% annually.

Google emissions jump 48% in five

Three Mile Island nuclear plant will years due to Al data center boom
reopen to power Microsoft data centers

Water and electricity use soar to record highs

48

Core, Edge/Satellite, PoP

[ra—]
ool Noll el N

J..E_

- © i
&

= OO0~ O @D v v

oo Nell el el B _

11111

- fp—|
I
-
1111111111 i , I

0000w v™ D ™ee

. -
09
-
D O
e
CCm
X 3@ O
555 -
26870 5.
2L 3 O
= 7S
2w o8 AU

49

https://www.youtube.com/watch?v=2R-UVdw6thI

Core, Edge/Satellite, PoP

[ra—]
ool Noll el N

J..E_

- © i
&

= OO0~ O @D v v

oo Nell el el B _

11111

- fp—|
I
-
1111111111 i , I

0000w v™ D ™ee

. -
09
-
D O
e
CCm
X 3@ O
555 -
26870 5.
2L 3 O
= 7S
2w o8 AU

49

https://www.youtube.com/watch?v=2R-UVdw6thI

Datacenter building blocks

Rack

Typically is 19 or 23 inches wide
Typically 42 U
U or RU is a Rack Unit - 1.75 inches

Slots:

Rack Slots

e Slots hold power distribution, servers, storage, networking equipment

e Typical server: 2U
o 128-192 cores
o DRAM: 256-512 GB

e Typical storage: 2U
e 30 drives

o Typical Network: 1U
o 12 100Gb/s

Project Stargate

Announcing The Stargate Project

Announcing The Stargate Project

®& 2min.read - [F] View original

The Stargate Project is a new company which intends to invest
$500 billion over the next four years building new Al
infrastructure for OpenAl in the United States. We will begin
deploying $100 billion immediately. This infrastructure will secure
American leadership in Al, create hundreds of thousands of
American jobs, and generate massive economic benefit for the
entire world. This project will not only support the re-

industrialization of the United States but also provide a strategic

capability to protect the national security of America and its allies.

The initial equity funders in Stargate are SoftBank, OpenAl,
Oracle, and MGX. SoftBank and OpenAl are the lead partners for
Stargate, with SoftBank having financial responsibility and
OpenAl having operational responsibility. Masayoshi Son will be

the chairman.

53

