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Course Introduction 
Systems concepts



Topic 1: Agenda

Intro to instructors 
High-level overview 
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Class logistics 
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Performance and systems rules of thumb 
Intro to datacenters
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Course Instructors and TAs

▪ Instructor: Waqar Aqeel

▪ Head TAs: Krishen and Anouksha

▪ TAs: Anisha, Vaishnavi, Sushmita, Arya

▪ All CAs have experience in databases and systems
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Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

▪Internet of Things

▪Social media, website contents
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What can we do with all this data?

▪What video should I recommend to this user to view next?

▪ Does this MRI image of a breast contain a tumor?

▪Who is going to win the election?

▪Which cities in the US will have high incidence of flu in 2 weeks?

▪ Is the object across from the car a pedestrian?
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What is big data?

▪ “Extremely large data sets that may be analyzed computationally to reveal 
patterns, trends, and associations, especially relating to human behavior and 
interactions” – Oxford Dictionary 

▪What’s an extremely large data set? 
– Fits on a single machine? 
– Fits on 10 machines?
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What algorithm should 
we use?

How to store the data?

How do ML/AI systems 
work?

How to query/analyze 
the data?

How do we ensure 
uptime/availability to 

the data?

How are big data 
systems designed?

How to train my own 
ML models

How do we explain/
debug ML models?

How can data be 
visualized?

What are the statistical/
mathematical foundations for 

data science?

How to ensure privacy/
security/quality?
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▪ Broad overview of cloud systems that are used in data science 
– Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses) 
– Computer systems foundations (throughput vs. latency, scalability vs. performance) 
– Distributed systems for data scientists (sharding, fault tolerance) 
– Systems for machine learning (accelerators, distributed training/inference infrastructure) 
– Basic security for data scientists (encryption, privacy)

▪ Throughout the class we will focus on how commonly used and modern cloud-
based big data systems work (BigQuery, RocksDB,…)

▪ The class will give a broad and hopefully practical introduction to these topics 
geared towards data scientists, but does not replace core CS/EE classes like OS, 
databases, distributed systems, security, architecture, ML

▪ You come from diverse backgrounds: Some of the content will be repetitive for 
students who have taken the classes above, like databases, systems, networks etc.

▪ Required background 
– Programming experience with Python 
– Both programming assignments will be submitted in Python
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Course Administration and Grading

▪ All materials, assignments, etc. posted on course website 
▪ Show locally, link to come

▪ Only one section

▪ Announcement/Q&A will be posted on Ed

▪ Lecture Materials 
– Lecture slides 
– No textbook

▪ Homework, assignments, exams 
– Programming assignment 2: (5%) 
– Written assignment 2: systems and databases (5%) 
– Programming assignment 3: Indexing and filtering (10%) 
– Written assignment 4: distributed systems, ML, security (5%) 
– In-person midterm (25%) 
– In-person final exam (50%)

– All assignments will be turned in online

– All classes streamed online (Zoom) and recorded (available on CourseWorks) 
– No attendance required
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Programming Assignments

▪ 2 programming assignments 
– Both done individually

▪ Programming assignments are in Python 
– Brush up on your Python if you are rusty: many resources online 

• Most commonly-used language for data scientists

▪ Programming assignment 1 done in Google Cloud (GCP) 
– Goal: familiarize yourself with working in public cloud environment 

• AWS / Azure / GCP are similar 
• Many systems and deployment details are hidden / automated (but we won’t ignore them!) 
• We will be focusing on systems-level problems, not on algorithms 

– We will provide GCP credits, if you run out contact us 
• If you reach $10 of credits or less, please contact: Arya Shidore 
• But be careful not to spend too many!

▪ Programming assignment goals 
– Assignment 1: BigQuery 

• Learning to use SQL on a big data set 
– Assignment 3: Indexing and filtering data structures 

• Understanding how real-world data systems data structures work, strengthen Python skills
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More logistics

▪ Office hours: 
▪ CAs will hold office hours every weekday over Google Meet 
▪ Course calendar will have the meeting link: all office hours will use the same link 

▪ Ed 
▪ A CA is guaranteed to be available on Ed every weekday (when the school is open) from 

9AM – 5PM. We will try to answer your questions as fast as possible 

▪ Submit your assignments on time! 
▪ Homework submission will be on Gradescope 
▪ If you do not submit your HW on time, your grade will be 0% 
▪ We will give you plenty of time for the assignments, don’t wait until the last minute! 
▪ You can resubmit homework as many times as you want, until the deadline
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– Storage systems
– The memory hierarchy
– Storage technologies primer
– Distributed file systems
– Indexing
– Filters
– Caching
– Storage engines 
– In-memory key-value stores

– Distributed online databases (OLTP)
– 2 Phase Commit
– Locking
– Sharding
– Fault tolerance
– Replication and consensus

– Analytics (OLAP)
– Mapreduce computing model
– Stragglers
– Lineage
– Fault tolerance in distributed analytics: lineage
– Streaming computing model
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Tentative Contents and Syllabus

– Global serving infra 
– Layered load balancing 
– Multithreading 
– GPUs

– Single-node ML 
– GPUs and ML accelerators 
– Kernels, ML compilation 
– ML single node bottlenecks 
– ML memory

– Distributed ML 
– ML network 
– Distributed training 
– Checkpointing 
– Inference systems challenges

– Security and privacy 
– Security of big data systems 
– Privacy consideration 
– Data compliance and access control

– Observability 
– Data monitoring 
– Production metrics as a big data system 
– Data quality



Performance Concepts and Rules of Thumb

Adapted from David Patterson and Kathryn McKinley
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Performance Evaluation

▪ Metric: something we measure

▪ Goal: evaluate how good/bad our computer system is performing

▪ Examples: 
– Power consumed by our database 
– CPU cost of running a web backend 
– Average time it takes to render a user page 
– How many users can we support at the same time

▪ Metrics allow us to compare two computer systems

▪ They are crucial for proving improvements, diagnosing regressions
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Tradeoff: latency vs. throughput

▪ Pizza delivery example 
– Do you want your pizza to be fresh? 
– Do you want your pizza to be cheap?

▪Why do these conflict?

▪ Two different strategies for pizza company 
– Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as 

possible)

▪ Latency = execution time for a single task (length of the pipe)

▪ Throughput = number of tasks per unit time (width of the pipe)

▪ A more relevant example: 
– Latency requirement: Assuming cars drive at 65mph, so self driving car needs to recognize 

an object in 0.1 seconds 
– Throughput requirement: Object recognition system needs to process 1 million object 

recognition tasks every second to support 10,000 cars simultaneously
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Latency vs. Throughput is often a trade off

Plane DC to Paris Speed Passengers Throughput 
(pmph)

Boeing 747 6.5 hours 610 mph 470 286,700
Concorde 3 hours 1350 mph 132 178,200
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Latency vs. Throughput is often a trade off

Plane DC to Paris Speed Passengers Throughput 
(pmph)

Boeing 747 6.5 hours 610 mph 470 286,700
Concorde 3 hours 1350 mph 132 178,200

30

▪ Which plane has higher performance?
▪ Time to do the task (execution time)

– Latency, execution time, response time

▪ Tasks per day, hour, week, sec (performance)
– Throughput, bandwidth, operations per second

▪ Depends on what YOU want
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▪ Throughput of system Y running many requests 

– performance(𝑌 ) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

▪ “System X is n times faster than Y” means: 

–  𝑛 =  
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑋)
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑌 )
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How do we improve performance?

▪ Suppose we have a database that processes two types of queries: 
– Query A finishes in 100 seconds 
– Query B finishes in 2 seconds 

▪We want better performance 
– Which query should we improve? 

▪ The answer: it depends! (a pretty lousy answer) 
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Speedup

▪ Make a change to the system 

▪ Measure how much faster/slower it is 

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐h𝑎𝑛𝑔𝑒
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐h𝑎𝑛𝑔𝑒
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(1 − 𝑝)𝑝
𝑆
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𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

(1 − 𝑝) + 𝑝
𝑆
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– It’s usually less formal. Most metrics either obviously matter or obviously don’t.
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– It’s usually less formal. Most metrics either obviously matter or obviously don’t.

– Customers are either complaining, or they are not
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▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
1

0.9
= 1.111
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▪ Even if aggregated queries could be completed in zero time, our maximum speedup would be:

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
1

0.9
= 1.111

▪ More useful for parallel programming bottlenecks, but can be adapted here.
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Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements: 
– Nanosecond (ns): 1/1,000,000,000 second 
– Microsecond (us): 1/1,000,000 second 
– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

▪ Memory access: 100ns

▪ Read a small object from a random location on a local flash drive: 20,000ns, 20us

▪ Read a small object within the same network in a data center: 100,000ns, 100us

▪ Run a SQL query on a flash database: 1,000,000ns, 1ms

▪ Read a small random object from magnetic disk: 10,000,000ns, 10ms

▪ Run a SQL query on a disk database: 20,000,000ns, 20ms

▪ Roundtrip time over the internet: 30,000,000us, 30ms 
– Bounded by the speed of light! Roundtrip light speed from NYC to Beijing is ~150ms
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How can we use these numbers? A database example

▪ Scenario: 
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name 

using their CUID). 
– It first checks if the object is already saved locally, either in the CPU cache or in memory: 

• 10% chance it’s in the CPU cache 
• If not, 20% chance it’s in memory 

– If not saved locally, it fetches it from a database from within the same network
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How can we use these numbers? A database example

▪ Scenario: 
– A user application running in the cloud needs to read a small object (e.g., lookup the student’s name 

using their CUID). 
– It first checks if the object is already saved locally, either in the CPU cache or in memory: 

• 10% chance it’s in the CPU cache 
• If not, 20% chance it’s in memory 

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:
	 Prob(CPU) * cache_latency + 

	 Prob(not in CPU) * ( Prob (memory) * memory_latency + 

	 	            Prob (not in memory) * database_latency )

▪ 0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * ( database latency) ) 
= 0.1ns + 18ns + 0.72 * database latency

▪ Remote database latency = network latency + database latency = 1,100,000ns

▪ Total average latency = 792,018ns or 790us

▪ Total average latency ~= 0.72 * not in memory latency = 792,000ns

▪ Since 72% requests go to the database and it’s so slow, its latency dominates the 
total latency
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▪ Your app needs a cloud database that runs SQL queries

▪ You are considering running the database on two types of storage devices: flash vs. magnetic disk 
– You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

▪ Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)

▪ You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)

▪ Scenario 1: Your user queries involve only a single database access in the cloud (over the Internet) 
– Latency with flash database: 101ms 
– Latency with disk database: 110ms 

▪ Scenario 2: The app requires getting an initial response from the cloud database, then a user input, and 
then another cloud database request 
– Latency with flash database: 202ms 
– Latency with disk database: 220ms

▪ Scenario 3: The app requires 20 sequential databases accesses within the cloud to compute a single user 
query, and then it can return a response 
– Latency with flash database: 120ms 
– Latency with disk database: 300ms
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Identifying performance bottlenecks

▪ My application is seeing an average latency of 200ms, where is the bottleneck?

▪ A few guiding questions:
1. What systems does the web page need to access? Which networks does it need to 

traverse?
2. Start from the most common case + highest latency
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Identifying performance bottlenecks

▪ My application is seeing an average latency of 200ms, where is the bottleneck?

▪ A few guiding questions:
1. What systems does the web page need to access? Which networks does it need to 

traverse?
2. Start from the most common case + highest latency

▪ Example:
– Application needs to go through the Internet once ~ 1 * 100ms
– Hits a server that first checks if the request is saved on memory cache in the cloud     ~ 

0.2 * 100us
– If not (80% of the time), goes over the network and accesses a single disk database   ~ 

0.8 * 10ms

▪ Guess 1: Internet slowdown (highest latency)

▪ Guess 2: database slowdown (second highest latency)
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Summary

● Latency and throughput: two important metrics, sometimes correlate, 
but often do not 

● Amdahl’s law: optimize the common case 

● Computer systems almost always involve a performance vs. cost trade 
off
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The Infrastructure of Big Data

Adapted from Mendel Rosenblum and Jeff Dean



Motivating example: Google web search (1999 vs. 2010)
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Motivating example: Google web search (1999 vs. 2010)

▪ # docs: tens of millions to tens of billions	 	 	 ~1000X

▪ Queries processed/day:	 	 	 	               ~1000X

▪ Per doc info in index:	 	 	 	 	 ~3X

▪ Update latency: months to tens of seconds		 	 ~50000X

▪ Average query latency: 1 seconds to 0.2 seconds	 	 ~5X

▪ More machines * faster machines:		 	 	 ~1000X
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Google Circa 1997 (definitely not big data)
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Google infrastructure circa 1997 could fit in a single room
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Scaling up

▪What happens when a server doesn’t fit in a single room?

▪What happens if we need 1000X more servers?
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Scaling up

▪What happens when a server doesn’t fit in a single room?

▪What happens if we need 1000X more servers?

▪ The cloud to the rescue!
– Also known as… data centers
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Evolution of data centers

● 1960's, 1970's: a few very large time-shared computers

● 1980's, 1990's: heterogeneous collection of lots of smaller machines.

● 2000-2020: 

○ Data centers contain large numbers of nearly identical machines 

○ Geographically spread around the world 

○ Individual applications can use thousands of machines simultaneously 

● 2020’s-today: 

○ Accelerated construction of AI-specific datacenters  

○ Clusters of datacenters in the same region to train massive models 

● Companies consider data center technology a trade-secret, especially in the age of AI 

○ Limited public discussion of the state of the art from industry leaders



Power is the biggest constraint
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Core, Edge/Satellite, PoP
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Datacenter building blocks



Rack



Rack

● Typically is 19 or 23 inches wide 
● Typically 42 U  
○ U or RU is a Rack Unit - 1.75 inches 

  

● Slots:



Rack Slots 

● Slots hold power distribution, servers, storage, networking equipment 

● Typical server: 2U 
○ 128-192 cores 
○ DRAM: 256-512 GB  

● Typical storage: 2U 
● 30 drives 

● Typical Network: 1U 
○ 72 100Gb/s



Project Stargate
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