Lecture 1

Computer Systems for Data Science Topic 1

Course Introduction

Systems concepts

Topic 1: Agenda

- Intro to instructors
- High-level overview
 - What is data science and big data?
 - Class goals and why should you care?
- Class logistics
 - How the class is going to work?
- Performance and systems rules of thumb
- Intro to datacenters

Who Are We?

Course Instructors and TAs

- Instructor: Asaf Cidon
- Head TA: Yuhong Zhong
- TAs: Triyasha Ghosh Dastidar, Vahab Jabrayilov, Hans Shen, Haoda Wang, Tal Zussman
- All CAs have experience in databases and systems
 - Plus Yuhong and Tal helped create the course homework

What is Data Science and Big Data?

This was a system for big data

67 1928 hne co H. Kelly Phoening, Angrea. harity U. Dones TI hter 11 augona 11

Data science systems were expensive

Today: data is cheap

Physical devices

Physical devices

Software logs

Physical devices

Software logs

Phones

Physical devices

Software logs

Phones

GPS/Cars

Physical devices

Software logs

Phones

GPS/Cars

Internet of Things

Physical devices

Software logs

Phones

GPS/Cars

Internet of Things

Social media, website contents

6	

2 White House		The Opinion Pages	
Officials Helped Nunes View Secret Reports Martieve Reports		Why I Support a Border- Adjustment Tax By writikan Joets My company needs relief, but I don't want to see huge budget deficits.	se onfirmation rsuch purt
 White House officials helped provide Devin Nunes, the Republican chairman of the House Intelligence Committee, with reports that showed incidental surveillance of the Trump team. The revelation is likely to 	Desperate, on a Road to Nowhere Times journalists spent weeks documenting the stories of people living along a desert highway in Niger, interviewing more than noo residents scattered by Boko Haram. By DOUNCE SLAUCCO / Photographs by ADAM FIZUROCOM The Daily 300 A View of the highway	Editorial: Ignoring History and the Promise of Diplomacy Editorial: Crisis in Venezueta Collins: Trump Remembers the Ladies With Trump 9 Big Bird With Trump 9 With Trump 9 With Trump 9 State 10 State 10 St	orant of His ce ehy the that the ast rebook +
fuel criticism that Mr. Nunes has been too eager to do the bidding of the Trump administration.	AUDIO Listen to 'The Daily'	THE CROSSWORD + WORDPLAY + Play Today's Puzzle	
445 Comments	President Trump's E.P.A. chief, confounds both sides.	3h HBO announced that it would broadcast a new drama series based on Elena Ferrante's "My Brilliant Friend." It will go into production this	
Bathroom Law Repeal Passes North	•	summer.	
Carolina Legislature By Bichard PAUSET 34 minutes ago Both houses of the state's heichture worded in favor of a	Follow The Daily: Daily SMS iTunes Radio Public Stitcher	3h Meet Evatar: a lab model that mimics the female reproductive system. Researchers hope it will help with research into endometrixis, fibroids, cancer and infertility.	

What can we do with all this data?

- What video should I recommend to this user to view next?
- Does this MRI image of a breast contain a tumor?
- Who is going to win the election?
- Which cities in the US will have high incidence of flu in 2 weeks?
- Is the object across from the car a pedestrian?

What is big data?

- "Extremely large data sets that may be analyzed computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions" – Oxford Dictionary
- What's an extremely large data set?
 - Fits on a single machine?
 - Fits on 10 machines?

Ok... But what is this class about?

Our focus in this class: Computer Systems for Data Science

Questions we will answer in this class:

Questions we won't answer in this class:

Course Objectives

Graduate-level course

Broad overview of cloud systems that are used in data science

- Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)
- Computer systems foundations (throughput vs. latency, scalability vs. performance)
- **Distributed systems** for data scientists (sharding, fault tolerance)
- Systems for machine learning (accelerators, distributed training/inference infrastructure)
- **Basic security** for data scientists (encryption, privacy)
- Throughout the class we will focus on how commonly used and modern cloudbased big data systems work (BigQuery, RocksDB,...)
- The class will give a broad and hopefully practical introduction to these topics geared towards data scientists, but does not replace core CS/EE classes like OS, databases, distributed systems, security, architecture, ML
- You come from diverse backgrounds: Some of the content will be repetitive for students who have taken the classes above, especially intro to databases

Required background

- Programming experience with Python
- Both programming assignments will be submitted in Python

Course Administration and Grading

- All materials, assignments, etc. posted on course website
 - https://csee4121.github.io/spring2025/
- Both sections will be identical
 - Same lecturer, same CAs, same courseworks, same content, follow the same pace

Announcement/Q&A will be posted on Ed

Lecture Materials

- Lecture slides
- No textbook (new, fast moving field)

Homework, assignments, exams

- Programming assignment 1: BigQuery (5%)
- Written assignment 1: systems and databases (5%)
- Programming assignment 2: Indexing and filtering (10%)
- Written assignment 2: distributed systems, ML, security (5%), alone
- Take home midterm (done online) (20%)
- In-person final exam, same time for both sections (55%)

All assignments, midterm will be turned in online

- All classes streamed online (Zoom) and recorded (available on CourseWorks)

No attendance required

Programming Assignments

- 2 programming assignments
 - Both done individually
- Programming assignments are in Python
 - Brush up on your Python if you are rusty: many resources online
 - Most commonly-used language for data scientists
- Programming assignment 1 done in Google Cloud (GCP)
 - Goal: familiarize yourself with working in public cloud environment
 - AWS / Azure / GCP are similar
 - Many systems and deployment details are hidden / automated (but we won't ignore them!)
 - We will be focusing on systems-level problems, not on algorithms
 - We will provide GCP credits, if you run out contact us
 - If you reach \$10 of credits or less, please contact: Tal Zussman
 - But be careful not to spend too many!
- Programming assignment goals
 - Assignment 1: BigQuery
 - Learning to use SQL on a big data set
 - Assignment 2: Indexing and filtering data structures
 - Understanding how real-world data systems data structures work, strengthen Python skills

More logistics

• Office hours:

- CAs will hold office hours every weekday over Zoom
- We will announce the Zoom link: all office hours will use the same Zoom link

Ed

- A CA is guaranteed to be available on Ed every weekday (when the school is open) from 9AM – 5PM. We will try to answer your questions within 1 hour during those time windows
- We will cannot guarantee a fast response when questions are answered not in those times windows

Submit your assignments on time!

- HW submission will be on Gradescope
- If you do not submit your HW on time, your grade will be 0%
- We will give you plenty of time for the programming assignments, don't wait until the last minute!
- You can resubmit homework as many times as you want, until the deadline

Tentative Contents and Syllabus

- Computer systems and performance rules of thumb
 - Latency vs. throughput
 - Amdahl's law
 - Back-of-the-envelope systems math
 - Performance bottlenecks
- Data centers
 - What is a data center?
 - Data center failures
 - Achieving reliability with smart software
 - The rise of AI data centers
- Relational model and SQL
 - Relational model and SQL
 - SELECT, FROM, WHERE
 - GROUPBY
 - JOINs
 - Nested queries
 - Transactions
 - ACID
 - OLAP vs. OLTP, SQL vs. NoSQL
 - Logging

Tentative Contents and Syllabus

- Storage systems
 - The memory hierarchy
 - Storage technologies primer
 - Distributed file systems
 - Indexing
 - Filters
 - Caching
 - Storage engines
 - In-memory key-value stores
- Distributed online databases (OLTP)
 - 2 Phase Commit
 - Locking
 - Sharding
 - Fault tolerance
 - Replication and consensus
- Analytics (OLAP)
 - Mapreduce computing model
 - Stragglers
 - Lineage
 - Fault tolerance in distributed analytics: lineage
 - Streaming computing model

Tentative Contents and Syllabus

- Single-node ML
 - GPUs and ML accelerators
 - Kernels, ML compilation
 - ML single node bottlenecks
 - ML memory
- Distributed ML
 - ML network
 - Distributed training
 - Checkpointing
 - Inference systems challenges
- Security and privacy
 - Security of big data systems
 - Privacy consideration
 - Data compliance and access control
- Data observability
 - Data monitoring
 - Data quality

Performance Concepts and Rules of Thumb

Performance Evaluation

- Metric: something we measure
- Goal: evaluate how good/bad our computer system is performing
- Examples:
 - Power consumed by our database
 - Cost of running our web application
 - Average time it takes to render a user page
 - How many users can we support at the same time
- Metrics allow us to compare two computer systems

Tradeoff: latency vs. throughput

- Pizza delivery example
 - Do you want your pizza hot?
 - Do you want your pizza to be cheap?
- Why do these conflict?
- Two different strategies for pizza company
 - Often we have a requirement for both (I want my pizza to be delivered in X time as cheaply as possible)
- Latency = execution time for a single task
- Throughput = number of tasks per unit time
- A more relevant example:
 - Latency requirement: Assuming cars drive at 65mph, so self driving car needs to recognize an object in 0.1 seconds
 - Throughput requirement: Object recognition system needs to process 1 million object recognition tasks every second to support 10,000 cars simultaneously

Latency vs. Throughput is often a trade off

Plane	DC to Paris	Speed	Passengers	Throughput (pmph)
Boeing 747	6.5 hours	610 mph	470	286,700
Concorde	3 hours	1350 mph	132	178,200

Which plane has higher performance?

- Time to do the task (execution time)
 - Latency, execution time, response time
- Tasks per day, hour, week, sec (performance)
 - Throughput, bandwidth, operations per second

Definitions

- Performance is in units of things-per-second
 Bigger is better
- Response time of a system Y running Z

 $-\operatorname{performance}(Y) = \frac{1}{\operatorname{execution\,time\,(Z\,on\,Y)}}$

Throughput of system Y running many requests

- performance $(Y) = \frac{number of requests}{unit time}$

"System X is n times faster than Y" means:

 $-n = \frac{performance(X)}{performance(Y)}$

How do we improve performance?

Suppose we have a database that processes two types of queries:

- Query A finishes in 100 seconds
- Query B finishes in 2 seconds
- We want better performance
 Which query should we improve?
- The answer: it depends!

Speedup

- Make a change to the system
- Measure how much faster/slower it is

• Speedup = $\frac{Execution time before change}{Execution time after change}$

Speedup when we know details about the change

- Performance improvement depends on:
 - How good is the enhancement? (factor S)
 - How often is it used? (factor p)
- Speedup due to enhancement E:

 $-Speedup(E) = \frac{Execution time without E}{Execution time with E} = \frac{Performance with E}{Performance without E}$ $-ExTime_{new} = ExTime_{old} * \left[(1-p) + \frac{p}{s} \right]$

- Explanation:
- (1-p) is the fraction of operations that are not affected by E
- $\frac{p}{s}$ is the fraction of operations that are affected by E, with the enhancement factor

$$-Speedup(E) = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1-p) + \frac{p}{S}}$$

Amdahl's law: example

- We built a new database that speeds up aggregate queries by 2x! Hurray!
- But... only 10% of queries are aggregate queries

Amdahl's law: speedup bounded by

fraction of time not enhanced

1

Even if aggregated queries could be completed in zero time, our maximum speedup would be:

• Speedup_{optimal} =
$$\frac{1}{0.9} = 1.111$$

Useful back-of-the-envelope latency numbers (all rough estimates)

- Time measurements:
 - Nanosecond (ns): 1/1,000,000,000 second
 - Microsecond (us): 1/1,000,000 second
 - Millisecond (ms): 1/1000 second
- CPU cache access: 1ns
- Memory access: 100ns
- Read a small object from a random location on a local flash drive: 50,000ns, 50us
- Read a small object within the same network in a data center: 100,000ns, 100us
- Run a SQL query on a flash database: 1,000,000ns, 1ms
- Read a small random object from magnetic disk: 10,000,000ns, 10ms
- Run a SQL query on a disk database: 20,000,000ns, 20ms
- Roundtrip time over the internet: 100,000,000ns, 100ms
 - Bounded by the speed of light! Roundtrip light speed from NYC to Beijing is ~150ms

How can we use these numbers? A database example

Scenario:

- A user application running in the cloud needs to read a small object (e.g., lookup the student's name using their CUID).
- It first checks if the object is already saved locally, either in the CPU cache or in memory:
 - 10% chance it's in the CPU cache
 - If not, 20% chance it's in memory
- If not saved locally, it fetches it from a database from within the same network

Compute exepcted latency:

Prob(CPU) * cache_latency +

```
Prob(not in CPU) * ( Prob (memory) * memory_latency +
```

```
Prob (not in memory) * database_latency )
```

- 0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))
 = 0.1ns + 18ns + 0.72 * database latency
- Remote database latency = network latency + database latency = 1,100,000ns
- Total average latency = 792,018ns or 790us
- Total average latency ~= 0.72 * not in memory latency = 792,000ns

• \rightarrow Since 72% requests go to the database and it's so slow, its latency dominates , the total latency

Disk vs. Flash, Cost vs. Performance

- Your app needs a cloud database that runs SQL queries
- You are considering running the database on two types of storage devices: flash vs. magnetic disk
 You received some quotes from database company, and flash database is 2X more expensive, but 10X faster
- Your users don't notice page loading times, as long as they are under 300,000,000ns (300ms)
- You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)
- Scenario 1: Your user queries involve only a single database access in the cloud (over the Internet)
 - Latency with flash database: 101ms
 - Latency with disk database: 110ms
- Scenario 2: The app requires getting an initial response from the cloud database, then a user input, and then another cloud database request
 - Latency with flash database: 202ms
 - Latency with disk database: 220ms
- Scenario 3: The app requires 20 sequential databases accesses within the cloud to compute a single user query, and then it can return a response
 - Latency with flash database: 120ms
 - Latency with disk database: 300ms

Identifying performance bottlenecks

- My application is seeing an average latency of 200ms, where is the bottleneck?
- A few guiding questions:
 - 1. What systems does the web page need to access? Which networks does it need to traverse?
 - 2. Start from the most common case + highest latency
- Example:
 - Application needs to go through the Internet once ~ 1 * 100ms
 - Hits a server that first checks if the request is saved on memory cache in the cloud
 - ~ 0.2 * 100us
 - If not (80% of the time), goes over the network and accesses a single disk database
 ~ 0.8 * 10ms
- Guess 1: Internet slowdown (highest latency)
- Guess 2: database slowdown (second highest latency)

Summary

- Latency and throughput: two important metrics, sometimes correlate, but often do not
- ℵ Amdahl's law: optimize the common case
- Computer systems almost always involve a performance vs. cost trade off

The Infrastructure of Big Data

Motivating example: Google web search (1999 vs. 2010)

# docs: tens of millions to tens of billions	~1000X
Queries processed/day:	~1000X
Per doc info in index:	~3X
Update latency: months to tens of seconds	~50000X
Average query latency: 1 seconds to 0.2 seconds	~5X

More machines * faster machines: ~1000X

Google Circa 1997 (definitely not big data)

Google infrastructure circa 1997 could fit in a single room

Scaling up

- What happens when a server doesn't fit in a single room?
- What happens if we need 1000X more servers?
- The cloud to the rescue!
 Also known as... data centers

Evolution of data centers

- 2 1960's, 1970's: a few very large time-shared computers
- 2 1980's, 1990's: heterogeneous collection of lots of smaller machines.

2000-2020:

- Data centers contain large numbers of nearly identical machines
- Geographically spread around the world
- Individual applications can use thousands of machines simultaneously
- 2020's-today:
 - Accelerated construction of AI-specific datacenters
 - Clusters of datacenters in the same region to train massive models
- 2 Companies consider data center technology a trade-secret, especially in the age of Al
 - Limited public discussion of the state of the art from industry leaders

Power is the biggest constraint

Figure ES-1. Projections of potential electricity consumption by U.S. data centers: 2023–2030 . % of 2030 electricity consumption projections assume that all other (non-data center) load increases at 1% annually.

NATIONAL

Three Mile Island nuclear plant will reopen to power Microsoft data centers

Google emissions jump 48% in five years due to AI data center boom

Water and electricity use soar to record highs

Datacenter building blocks

Rack

Slots:

Typically is 19 or 23 inches wide Typically 42 U

• U or RU is a Rack Unit - 1.75 inches

Rack Slots

Slots hold power distribution, servers, storage, networking equipment

- 🖄 Typical server: 2U
 - 128-192 cores
 - DRAM: 256-512 GB
- № Typical storage: 2U№ 30 drives
- Typical Network: 1U
 72 100Gb/s

Row/Cluster

🔌 30+ racks

Lecture 2

Networking - Switch locations

- ℵ Top-of-rack switch
 - Connecting machines in rack
 - Multiple links going to end-of-row routers
- & End-of-row router
 - Aggregate row of machines
 - Multiple links going to core routers
- 🙋 Core router
 - Multiple core routers
- 2 Each of these have different latencies, throughput

Multipath routing

Ideal: "full bisection bandwidth"

& Would like network where everyone has a private channel to everyone else

- (cross-bar topology)
- Why is this useful?
- & In practice, today:
 - Assumes applications have locality to rack or row but this is hard to achieve in practice.

Power Usage Effectiveness (PUE)

≥ Early data centers built with off-the-shelf components

- Standard servers
- HVAC unit designs from malls
- PUE ratio = <u>Total Facility Powe</u>r Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0

- & Average PUE for Google datacenters today: 1.1 (only 10% from optimal!)
- 2 Power is about 25% of monthly operating cost
 - And is a limiting factor in how large the datacenter can be

Energy Efficient Data Centers

- & Better power distribution Fewer transformers
- & Better cooling use environment (air/water) rather than air conditioning
 - Bring in outside air
 - Evaporate some water
- ጲ IT Equipment range
 - OK up to +115°F

Liquid immersion is the "hottest" new technology for cooling datacenters

Backup Power

- & Massive amount of batteries to tolerate short glitches in power
 - Just need long enough for backup generators to startup
- & How do glitches occur?
 - Thunder, earthquake, power loss from power company, cyber attack, ...
- & Massive collections of backup generators
- 2 Huge fuel tanks to provide fuel for the generators
- ℵ Fuel replenishment transportation network (e.g. fuel trucks)

Energy sources

Increasingly, data centers powered by renewable energy

- But, solar/wind are intermittent
- Hydro, nuclear are more reliable
- In practice, many new data centers powered by solar / wind but might still rely on fossil fuels from the electric grid when the wind isn't blowing / sun isn't shining

Fault Tolerance

- & At the scale of new data centers, things are breaking constantly
- & Every aspect of the data center must be able to tolerate failures
- & Solution: Redundancy
 - Multiple independent copies of all data
 - Multiple independent network connections
 - Multiple copies of every services

Failures in first year for a new data center (Jeff Dean)

- ~thousands of hard drive failures
- ~1000 individual machine failures
- ~dozens of minor 30-second blips for DNS
- ~3 router failures (have to immediately pull traffic for an hour)
- ~12 router reloads (takes out DNS and external VIPs for a couple minutes)
- ~8 network maintenances (4 might cause ~30-minute random connectivity losses)
- ~5 racks go wonky (40-80 machines see 50% packet loss)
- ~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
- ~1 network rewiring (rolling ~5% of machines down over 2-day span)
- ~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
- ~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back) ~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

→ Reliability must come from software!

Al datacenters

- 🙋 Today: mostly focused on large-scale AI training
- 🐹 In the future: inference, especially for inference-expensive reasoning models
- & Built by a relatively small number of companies
 - Hyperscalers like Microsoft, Google, Amazon, Meta
 - Nation states: UAE, Saudi Arabia, ...
 - "Neoclouds": Crusoe, CoreWeave, Nebius, Lambda Labs

OpenAl and Softbank are starting a

'The Stargate Project' is starting its buildout in Texas, with participation from Oracle, MGX, Microsoft, Nvidia, and Arm.

By Richard Lawler, a senior editor following news across tech, culture, policy, and entertainment. He joined The Verge in 2021 after several years covering news at Engadget

Jan 21 2025 5:45 PM EST

Comparing AI datacenters to traditional ones

& Similarities

- Same rack/row topology
- Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

ጲ Differences

- Compute: Thousands of GPUs, small ratio of CPU/GPU
- Memory: Don't need as much traditional CPU memory, require lots of on-GPU High Bandwidth Memory (HBM), which is much more expensive
- Network: AI training has much more demanding networking requirements. Requires dedicated high-bandwidth networking both within a server (e.g., NVIDIA's NVLINK) and across servers (e.g., Infiniband)

№ We will cover these topics more deeply in the second half of the class

Where should you build your datacenter?

- 2 Plentiful, inexpensive electricity
 - Examples Oregon: Hydroelectric; Iowa: Wind
 - Increasingly: nuclear, thermal
- & Good network connections
 - Access to the Internet backbone
- ጲ Inexpensive land
- 🙋 Geographically near users
 - Speed of light latency
 - Country laws (e.g. Our citizen's data must be kept in our county.)
- 🖄 Available labor pool
- 2 Politics
 - Tax breaks
 - AI regulations

Google Data Center - Council Bluffs, Iowa, USA

Source: semianalysis

Google data center pictures: Council Bluffs

Datacenter "megasites"

- Key Four Google datacenter sites within a 50-mile radius of each other, in the Iowa/Nebraska region
- & May reach GW of total power consumption

Source: semianalysis

Summary

- It's easy as data scientists (or software engineers) to lose sight that our code actually runs somewhere physically
- The cloud is not some abstract concept: these are huge physical sites consuming power equivalent to entire cities
- ℵ AI is accelerating the construction of new data centers
- Datacenter sustainability (especially in the age of AI) is going to be extremely important in the coming years