
Lecture 1

Computer Systems for Data Science
Topic 1

Course Introduction

Systems concepts

Topic 1: Agenda

▪ Intro to instructors

▪ High-level overview
– What is data science and big data?

– Class goals and why should you care?

▪ Class logistics
– How the class is going to work?

▪ Performance and systems rules of thumb

▪ Intro to datacenters

Who Are We?

Course Instructors and TAs

▪ Instructor: Asaf Cidon

▪ Head TA: Yuhong Zhong

▪ TAs: Triyasha Ghosh Dastidar, Vahab Jabrayilov, Hans Shen, Haoda Wang, Tal

Zussman

▪ All CAs have experience in databases and systems
– Plus Yuhong and Tal helped create the course homework

5

What is Data Science and Big Data?

This was a system for big data

Data science systems were expensive

Today: data is cheap

Where is data coming from?

▪Physical devices

Where is data coming from?

▪Physical devices

▪Software logs

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

▪Internet of Things

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

▪Internet of Things

▪Social media, website contents

What can we do with all this data?

▪ What video should I recommend to this user to view next?

▪ Does this MRI image of a breast contain a tumor?

▪ Who is going to win the election?

▪ Which cities in the US will have high incidence of flu in 2 weeks?

▪ Is the object across from the car a pedestrian?

16

What is big data?

▪ “Extremely large data sets that may be analyzed computationally to reveal

patterns, trends, and associations, especially relating to human behavior and

interactions” – Oxford Dictionary

▪ What’s an extremely large data set?
– Fits on a single machine?

– Fits on 10 machines?

17

Ok… But what is this class about?

▪ Questions we will answer in this class: ▪ Questions we won’t answer in this class:

Our focus in this class: Computer Systems for Data Science

19

What algorithm should
we use?

How to store the data?

How does ML/AI
systems work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

How to train my own
ML models

How do we
explain/debug ML

models?

How can data be
visualized?

What are the
statistical/mathematical

foundations for data science?

How to ensure
privacy/security/quality?

20

Course Objectives

▪ Graduate-level course

▪ Broad overview of cloud systems that are used in data science
– Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)

– Computer systems foundations (throughput vs. latency, scalability vs. performance)

– Distributed systems for data scientists (sharding, fault tolerance)

– Systems for machine learning (accelerators, distributed training/inference infrastructure)

– Basic security for data scientists (encryption, privacy)

▪ Throughout the class we will focus on how commonly used and modern cloud-

based big data systems work (BigQuery, RocksDB,…)

▪ The class will give a broad and hopefully practical introduction to these topics

geared towards data scientists, but does not replace core CS/EE classes like
OS, databases, distributed systems, security, architecture, ML

▪ You come from diverse backgrounds: Some of the content will be repetitive for
students who have taken the classes above, especially intro to databases

▪ Required background
– Programming experience with Python

– Both programming assignments will be submitted in Python

21

Course Administration and Grading

▪ All materials, assignments, etc. posted on course website
▪ https://csee4121.github.io/spring2025/

▪ Both sections will be identical
▪ Same lecturer, same CAs, same courseworks, same content, follow the same pace

▪ Announcement/Q&A will be posted on Ed

▪ Lecture Materials
– Lecture slides
– No textbook (new, fast moving field)

▪ Homework, assignments, exams
– Programming assignment 1: BigQuery (5%)
– Written assignment 1: systems and databases (5%)

– Programming assignment 2: Indexing and filtering (10%)
– Written assignment 2: distributed systems, ML, security (5%), alone

– Take home midterm (done online) (20%)
– In-person final exam, same time for both sections (55%)

– All assignments, midterm will be turned in online

– All classes streamed online (Zoom) and recorded (available on CourseWorks)
– No attendance required

Programming Assignments

▪ 2 programming assignments
– Both done individually

▪ Programming assignments are in Python
– Brush up on your Python if you are rusty: many resources online

• Most commonly-used language for data scientists

▪ Programming assignment 1 done in Google Cloud (GCP)
– Goal: familiarize yourself with working in public cloud environment

• AWS / Azure / GCP are similar
• Many systems and deployment details are hidden / automated (but we won’t ignore them!)
• We will be focusing on systems-level problems, not on algorithms

– We will provide GCP credits, if you run out contact us
• If you reach $10 of credits or less, please contact: Tal Zussman
• But be careful not to spend too many!

▪ Programming assignment goals
– Assignment 1: BigQuery

• Learning to use SQL on a big data set

– Assignment 2: Indexing and filtering data structures
• Understanding how real-world data systems data structures work, strengthen Python skills

22

23

More logistics

▪ Office hours:
▪ CAs will hold office hours every weekday over Zoom

▪ We will announce the Zoom link: all office hours will use the same Zoom link

▪ Ed
▪ A CA is guaranteed to be available on Ed every weekday (when the school is open)

from 9AM – 5PM. We will try to answer your questions within 1 hour during those time

windows

▪ We will cannot guarantee a fast response when questions are answered not in those

times windows

▪ Submit your assignments on time!
▪ HW submission will be on Gradescope

▪ If you do not submit your HW on time, your grade will be 0%

▪ We will give you plenty of time for the programming assignments, don’t wait until the

last minute!

▪ You can resubmit homework as many times as you want, until the deadline

24

Tentative Contents and Syllabus

– Computer systems and performance rules of thumb
– Latency vs. throughput
– Amdahl’s law
– Back-of-the-envelope systems math
– Performance bottlenecks

– Data centers
– What is a data center?
– Data center failures
– Achieving reliability with smart software
– The rise of AI data centers

– Relational model and SQL
– Relational model and SQL
– SELECT, FROM, WHERE
– GROUPBY
– JOINs
– Nested queries
– Transactions
– ACID
– OLAP vs. OLTP, SQL vs. NoSQL
– Logging

25

Tentative Contents and Syllabus

– Storage systems
– The memory hierarchy
– Storage technologies primer
– Distributed file systems
– Indexing
– Filters
– Caching
– Storage engines
– In-memory key-value stores

– Distributed online databases (OLTP)
– 2 Phase Commit
– Locking
– Sharding
– Fault tolerance
– Replication and consensus

– Analytics (OLAP)
– Mapreduce computing model
– Stragglers
– Lineage
– Fault tolerance in distributed analytics: lineage
– Streaming computing model

26

Tentative Contents and Syllabus

– Single-node ML
– GPUs and ML accelerators
– Kernels, ML compilation
– ML single node bottlenecks
– ML memory

– Distributed ML
– ML network
– Distributed training
– Checkpointing
– Inference systems challenges

– Security and privacy
– Security of big data systems
– Privacy consideration
– Data compliance and access control

– Data observability
– Data monitoring
– Data quality

Performance Concepts and Rules of Thumb

Adapted from David Patterson and Kathryn McKinley

Performance Evaluation

▪ Metric: something we measure

▪ Goal: evaluate how good/bad our computer system is performing

▪ Examples:
– Power consumed by our database

– Cost of running our web application

– Average time it takes to render a user page

– How many users can we support at the same time

▪ Metrics allow us to compare two computer systems

28

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza hot?

– Do you want your pizza to be cheap?

▪ Why do these conflict?

▪ Two different strategies for pizza company
– Often we have a requirement for both (I want my pizza to be delivered in X time as

cheaply as possible)

▪ Latency = execution time for a single task

▪ Throughput = number of tasks per unit time

▪ A more relevant example:
– Latency requirement: Assuming cars drive at 65mph, so self driving car needs to

recognize an object in 0.1 seconds

– Throughput requirement: Object recognition system needs to process 1 million object

recognition tasks every second to support 10,000 cars simultaneously
29

Latency vs. Throughput is often a trade off

Plane DC to Paris Speed Passengers Throughput

(pmph)

Boeing 747 6.5 hours 610 mph 470 286,700

Concorde 3 hours 1350 mph 132 178,200

30

▪Which plane has higher performance?

▪ Time to do the task (execution time)
– Latency, execution time, response time

▪ Tasks per day, hour, week, sec (performance)
– Throughput, bandwidth, operations per second

Definitions

▪ Performance is in units of things-per-second
– Bigger is better

▪ Response time of a system Y running Z

– performance 𝑌 =
1

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑍 𝑜𝑛 𝑌)

▪ Throughput of system Y running many requests

– performance 𝑌 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

▪ “System X is n times faster than Y” means:

– 𝑛 =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑋)

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑌)

31

How do we improve performance?

▪ Suppose we have a database that processes two types of queries:
– Query A finishes in 100 seconds

– Query B finishes in 2 seconds

▪ We want better performance
– Which query should we improve?

▪ The answer: it depends!

32

Speedup

▪ Make a change to the system

▪ Measure how much faster/slower it is

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐ℎ𝑎𝑛𝑔𝑒

33

Speedup when we know details about the change

▪ Performance improvement depends on:
– How good is the enhancement? (factor S)

– How often is it used? (factor p)

▪ Speedup due to enhancement E:

– 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐸 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐸

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝐸
=

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝐸

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐸

– 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ 1 − 𝑝 +
𝑝

𝑆

• Explanation:
• 1 − 𝑝 is the fraction of operations that are not affected by E

•
𝑝

𝑆
 is the fraction of operations that are affected by E, with the enhancement factor

– 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐸 =
𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

1−𝑝 +
𝑝

𝑆

34

Amdahl’s law: example

▪ We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ 1 − 𝑝 +
𝑝

𝑆

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ 0.9 +
0.1

2
= 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑡𝑜𝑡𝑎𝑙 =
1

0.95
= 1.053 → only 5.3% overall speedup 

▪ Amdahl’s law: speedup bounded by
1

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑

▪ Even if aggregated queries could be completed in zero time, our maximum

speedup would be:

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
1

0.9
= 1.111

35

Amdahl’s law in simple terms:
Make the common case fast!

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second

– Microsecond (us): 1/1,000,000 second

– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

▪ Memory access: 100ns

▪ Read a small object from a random location on a local flash drive: 50,000ns, 50us

▪ Read a small object within the same network in a data center: 100,000ns, 100us

▪ Run a SQL query on a flash database: 1,000,000ns, 1ms

▪ Read a small random object from magnetic disk: 10,000,000ns, 10ms

▪ Run a SQL query on a disk database: 20,000,000ns, 20ms

▪ Roundtrip time over the internet: 100,000,000ns, 100ms
– Bounded by the speed of light! Roundtrip light speed from NYC to Beijing is ~150ms

36

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the

student’s name using their CUID).

– It first checks if the object is already saved locally, either in the CPU cache or in memory:
• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:

 Prob(CPU) * cache_latency +

 Prob(not in CPU) * (Prob (memory) * memory_latency +

 Prob (not in memory) * database_latency)

▪ 0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))

= 0.1ns + 18ns + 0.72 * database latency

▪ Remote database latency = network latency + database latency = 1,100,000ns

▪ Total average latency = 792,018ns or 790us

▪ Total average latency ~= 0.72 * not in memory latency = 792,000ns

▪ → Since 72% requests go to the database and it’s so slow, its latency dominates

the total latency37

Disk vs. Flash, Cost vs. Performance

▪ Your app needs a cloud database that runs SQL queries

▪ You are considering running the database on two types of storage devices: flash vs. magnetic disk
– You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

▪ Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)

▪ You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)

▪ Scenario 1: Your user queries involve only a single database access in the cloud (over the Internet)
– Latency with flash database: 101ms

– Latency with disk database: 110ms

▪ Scenario 2: The app requires getting an initial response from the cloud database, then a user input, and
then another cloud database request

– Latency with flash database: 202ms

– Latency with disk database: 220ms

▪ Scenario 3: The app requires 20 sequential databases accesses within the cloud to compute a single user

query, and then it can return a response
– Latency with flash database: 120ms

– Latency with disk database: 300ms

38

Identifying performance bottlenecks

▪ My application is seeing an average latency of 200ms, where is the bottleneck?

▪ A few guiding questions:
1. What systems does the web page need to access? Which networks does it need to

traverse?

2. Start from the most common case + highest latency

▪ Example:
– Application needs to go through the Internet once ~ 1 * 100ms

– Hits a server that first checks if the request is saved on memory cache in the cloud

~ 0.2 * 100us

– If not (80% of the time), goes over the network and accesses a single disk database

~ 0.8 * 10ms

▪ Guess 1: Internet slowdown (highest latency)

▪ Guess 2: database slowdown (second highest latency)

39

Summary

 Latency and throughput: two important metrics, sometimes correlate,

but often do not

 Amdahl’s law: optimize the common case

 Computer systems almost always involve a performance vs. cost

trade off

40

The Infrastructure of Big Data

Adapted from Mendel Rosenblum and Jeff Dean

Motivating example: Google web search (1999 vs. 2010)

▪ # docs: tens of millions to tens of billions ~1000X

▪ Queries processed/day: ~1000X

▪ Per doc info in index: ~3X

▪ Update latency: months to tens of seconds ~50000X

▪ Average query latency: 1 seconds to 0.2 seconds ~5X

▪ More machines * faster machines: ~1000X

42

Google Circa 1997 (definitely not big data)

43

Google infrastructure circa 1997 could fit in a single room

44

Scaling up

▪ What happens when a server doesn’t fit in a single room?

▪ What happens if we need 1000X more servers?

▪ The cloud to the rescue!
– Also known as… data centers

45

Evolution of data centers

 1960's, 1970's: a few very large time-shared computers

 1980's, 1990's: heterogeneous collection of lots of smaller machines.

 2000-2020:

○ Data centers contain large numbers of nearly identical machines

○ Geographically spread around the world

○ Individual applications can use thousands of machines simultaneously

 2020’s-today:

○ Accelerated construction of AI-specific datacenters

○ Clusters of datacenters in the same region to train massive models

 Companies consider data center technology a trade-secret, especially in the age of AI

○ Limited public discussion of the state of the art from industry leaders

Power is the biggest constraint

47

Datacenter building blocks

Rack

 Typically is 19 or 23 inches wide

 Typically 42 U
○ U or RU is a Rack Unit - 1.75 inches

 Slots:

Rack Slots

 Slots hold power distribution, servers, storage, networking equipment

 Typical server: 2U
○ 128-192 cores

○ DRAM: 256-512 GB

 Typical storage: 2U
 30 drives

 Typical Network: 1U
○ 72 100Gb/s

Row/Cluster

 30+ racks

Lecture 2

Networking - Switch locations

 Top-of-rack switch
○ Connecting machines in rack

○ Multiple links going to end-of-row routers

 End-of-row router
○ Aggregate row of machines

○ Multiple links going to core routers

 Core router
○ Multiple core routers

 Each of these have different latencies, throughput

Multipath routing

Ideal: "full bisection bandwidth"

 Would like network where everyone has a private channel to everyone else

○ (cross-bar topology)

○ Why is this useful?

 In practice, today:

○ Assumes applications have locality to rack or row but this is hard to achieve in

practice.

Power Usage Effectiveness (PUE)

 Early data centers built with off-the-shelf components
○ Standard servers

○ HVAC unit designs from malls

PUE ratio = Total Facility Power
 Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0

 Average PUE for Google datacenters today: 1.1 (only 10% from optimal!)

 Power is about 25% of monthly operating cost

○ And is a limiting factor in how large the datacenter can be

Energy Efficient Data Centers

 Better power distribution - Fewer transformers

 Better cooling - use environment (air/water) rather than air conditioning
○ Bring in outside air

○ Evaporate some water

 IT Equipment range
○ OK up to +115℉

Liquid immersion is the “hottest” new technology for cooling
datacenters

58

Backup Power

 Massive amount of batteries to tolerate short glitches in power
○ Just need long enough for backup generators to startup

 How do glitches occur?

○ Thunder, earthquake, power loss from power company, cyber attack, …

 Massive collections of backup generators

 Huge fuel tanks to provide fuel for the generators

 Fuel replenishment transportation network (e.g. fuel trucks)

Energy sources

 Increasingly, data centers powered by renewable energy

○ But, solar/wind are intermittent

○ Hydro, nuclear are more reliable

 In practice, many new data centers powered by solar / wind but might still rely

on fossil fuels from the electric grid when the wind isn’t blowing / sun isn’t
shining

60

Fault Tolerance

 At the scale of new data centers, things are breaking constantly

 Every aspect of the data center must be able to tolerate failures

 Solution: Redundancy
○ Multiple independent copies of all data

○ Multiple independent network connections

○ Multiple copies of every services

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures

~1000 individual machine failures

~dozens of minor 30-second blips for DNS

~3 router failures (have to immediately pull traffic for an hour)

~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)

~5 racks go wonky (40-80 machines see 50% packet loss)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~1 network rewiring (rolling ~5% of machines down over 2-day span)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

→ Reliability must come from software!

AI datacenters

 Today: mostly focused on large-scale AI training

 In the future: inference, especially for inference-expensive reasoning models

 Built by a relatively small number of companies

○ Hyperscalers like Microsoft, Google, Amazon, Meta

○ Nation states: UAE, Saudi Arabia, …

○ “Neoclouds”: Crusoe, CoreWeave, Nebius, Lambda Labs

63

Comparing AI datacenters to traditional ones

 Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

 Differences

○ Compute: Thousands of GPUs, small ratio of CPU/GPU

○ Memory: Don’t need as much traditional CPU memory, require lots of on-GPU

High Bandwidth Memory (HBM), which is much more expensive

○ Network: AI training has much more demanding networking requirements.

Requires dedicated high-bandwidth networking both within a server (e.g., NVIDIA’s

NVLINK) and across servers (e.g., Infiniband)

 We will cover these topics more deeply in the second half of the class

64

Where should you build your datacenter?

 Plentiful, inexpensive electricity
○ Examples - Oregon: Hydroelectric; Iowa: Wind

○ Increasingly: nuclear, thermal

 Good network connections
○ Access to the Internet backbone

 Inexpensive land

 Geographically near users
○ Speed of light latency

○ Country laws (e.g. Our citizen's data must be kept in our county.)

 Available labor pool

 Politics

○ Tax breaks

○ AI regulations

Google Data Center - Council Bluffs, Iowa, USA

Source: semianalysis

Google data center pictures: Council Bluffs

Datacenter “megasites”

68
Source: semianalysis

 Four Google datacenter sites within a 50-mile radius of each other, in the

Iowa/Nebraska region

 May reach GW of total power consumption

Summary

 It’s easy as data scientists (or software engineers) to lose sight that

our code actually runs somewhere physically

 The cloud is not some abstract concept: these are huge physical sites

consuming power equivalent to entire cities

 AI is accelerating the construction of new data centers

 Datacenter sustainability (especially in the age of AI) is going to be

extremely important in the coming years

69

	Slide 1: Lecture 1
	Slide 2: Computer Systems for Data Science Topic 1
	Slide 3: Topic 1: Agenda
	Slide 4: Who Are We?
	Slide 5: Course Instructors and TAs
	Slide 6: What is Data Science and Big Data?
	Slide 7: This was a system for big data
	Slide 8: Data science systems were expensive
	Slide 9: Today: data is cheap
	Slide 10: Where is data coming from?
	Slide 11: Where is data coming from?
	Slide 12: Where is data coming from?
	Slide 13: Where is data coming from?
	Slide 14: Where is data coming from?
	Slide 15: Where is data coming from?
	Slide 16: What can we do with all this data?
	Slide 17: What is big data?
	Slide 18: Ok… But what is this class about?
	Slide 19: Our focus in this class: Computer Systems for Data Science
	Slide 20: Course Objectives
	Slide 21: Course Administration and Grading
	Slide 22: Programming Assignments
	Slide 23: More logistics
	Slide 24: Tentative Contents and Syllabus
	Slide 25: Tentative Contents and Syllabus
	Slide 26: Tentative Contents and Syllabus
	Slide 27: Performance Concepts and Rules of Thumb
	Slide 28: Performance Evaluation
	Slide 29: Tradeoff: latency vs. throughput
	Slide 30: Latency vs. Throughput is often a trade off
	Slide 31: Definitions
	Slide 32: How do we improve performance?
	Slide 33: Speedup
	Slide 34: Speedup when we know details about the change
	Slide 35: Amdahl’s law: example
	Slide 36: Useful back-of-the-envelope latency numbers (all rough estimates)
	Slide 37: How can we use these numbers? A database example
	Slide 38: Disk vs. Flash, Cost vs. Performance
	Slide 39: Identifying performance bottlenecks
	Slide 40: Summary
	Slide 41: The Infrastructure of Big Data
	Slide 42: Motivating example: Google web search (1999 vs. 2010)
	Slide 43: Google Circa 1997 (definitely not big data)
	Slide 44: Google infrastructure circa 1997 could fit in a single room
	Slide 45: Scaling up
	Slide 46: Evolution of data centers
	Slide 47: Power is the biggest constraint
	Slide 48: Datacenter building blocks
	Slide 49: Rack
	Slide 50: Rack Slots
	Slide 51: Row/Cluster
	Slide 52: Lecture 2
	Slide 53: Networking - Switch locations
	Slide 54: Multipath routing
	Slide 55: Ideal: "full bisection bandwidth"
	Slide 56: Power Usage Effectiveness (PUE)
	Slide 57: Energy Efficient Data Centers
	Slide 58: Liquid immersion is the “hottest” new technology for cooling datacenters
	Slide 59: Backup Power
	Slide 60: Energy sources
	Slide 61: Fault Tolerance
	Slide 62: Failures in first year for a new data center (Jeff Dean)
	Slide 63: AI datacenters
	Slide 64: Comparing AI datacenters to traditional ones
	Slide 65: Where should you build your datacenter?
	Slide 66: Google Data Center - Council Bluffs, Iowa, USA
	Slide 67: Google data center pictures: Council Bluffs
	Slide 68: Datacenter “megasites”
	Slide 69: Summary

