
Lecture 1

Computer Systems for Data Science
Topic 1

Course Introduction

Systems concepts

Topic 1: Agenda

▪ Intro to instructors

▪ High-level overview
– What is data science and big data?

– Class goals and why should you care?

▪ Class logistics
– How the class is going to work?

▪ Performance and systems rules of thumb

▪ Intro to datacenters

Who Are We?

Course Instructors and TAs

▪ Instructor: Asaf Cidon

▪ Head TA: Yuhong Zhong

▪ TAs: Triyasha Ghosh Dastidar, Vahab Jabrayilov, Hans Shen, Haoda Wang, Tal

Zussman

▪ All CAs have experience in databases and systems
– Plus Yuhong and Tal helped create the course homework

5

What is Data Science and Big Data?

This was a system for big data

Data science systems were expensive

Today: data is cheap

Where is data coming from?

▪Physical devices

Where is data coming from?

▪Physical devices

▪Software logs

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

▪Internet of Things

Where is data coming from?

▪Physical devices

▪Software logs

▪Phones

▪GPS/Cars

▪Internet of Things

▪Social media, website contents

What can we do with all this data?

▪ What video should I recommend to this user to view next?

▪ Does this MRI image of a breast contain a tumor?

▪ Who is going to win the election?

▪ Which cities in the US will have high incidence of flu in 2 weeks?

▪ Is the object across from the car a pedestrian?

16

What is big data?

▪ “Extremely large data sets that may be analyzed computationally to reveal

patterns, trends, and associations, especially relating to human behavior and

interactions” – Oxford Dictionary

▪ What’s an extremely large data set?
– Fits on a single machine?

– Fits on 10 machines?

17

Ok… But what is this class about?

▪ Questions we will answer in this class: ▪ Questions we won’t answer in this class:

Our focus in this class: Computer Systems for Data Science

19

What algorithm should
we use?

How to store the data?

How does ML/AI
systems work?

How to query/analyze
the data?

How do we ensure
uptime/availability to

the data?

How are big data
systems designed?

How to train my own
ML models

How do we
explain/debug ML

models?

How can data be
visualized?

What are the
statistical/mathematical

foundations for data science?

How to ensure
privacy/security/quality?

20

Course Objectives

▪ Graduate-level course

▪ Broad overview of cloud systems that are used in data science
– Database related topics (DBMS, SQL, NoSQL, data lakes/warehouses)

– Computer systems foundations (throughput vs. latency, scalability vs. performance)

– Distributed systems for data scientists (sharding, fault tolerance)

– Systems for machine learning (accelerators, distributed training/inference infrastructure)

– Basic security for data scientists (encryption, privacy)

▪ Throughout the class we will focus on how commonly used and modern cloud-

based big data systems work (BigQuery, RocksDB,…)

▪ The class will give a broad and hopefully practical introduction to these topics

geared towards data scientists, but does not replace core CS/EE classes like
OS, databases, distributed systems, security, architecture, ML

▪ You come from diverse backgrounds: Some of the content will be repetitive for
students who have taken the classes above, especially intro to databases

▪ Required background
– Programming experience with Python

– Both programming assignments will be submitted in Python

21

Course Administration and Grading

▪ All materials, assignments, etc. posted on course website
▪ https://csee4121.github.io/spring2025/

▪ Both sections will be identical
▪ Same lecturer, same CAs, same courseworks, same content, follow the same pace

▪ Announcement/Q&A will be posted on Ed

▪ Lecture Materials
– Lecture slides
– No textbook (new, fast moving field)

▪ Homework, assignments, exams
– Programming assignment 1: BigQuery (5%)
– Written assignment 1: systems and databases (5%)

– Programming assignment 2: Indexing and filtering (10%)
– Written assignment 2: distributed systems, ML, security (5%), alone

– Take home midterm (done online) (20%)
– In-person final exam, same time for both sections (55%)

– All assignments, midterm will be turned in online

– All classes streamed online (Zoom) and recorded (available on CourseWorks)
– No attendance required

Programming Assignments

▪ 2 programming assignments
– Both done individually

▪ Programming assignments are in Python
– Brush up on your Python if you are rusty: many resources online

• Most commonly-used language for data scientists

▪ Programming assignment 1 done in Google Cloud (GCP)
– Goal: familiarize yourself with working in public cloud environment

• AWS / Azure / GCP are similar
• Many systems and deployment details are hidden / automated (but we won’t ignore them!)
• We will be focusing on systems-level problems, not on algorithms

– We will provide GCP credits, if you run out contact us
• If you reach $10 of credits or less, please contact: Tal Zussman
• But be careful not to spend too many!

▪ Programming assignment goals
– Assignment 1: BigQuery

• Learning to use SQL on a big data set

– Assignment 2: Indexing and filtering data structures
• Understanding how real-world data systems data structures work, strengthen Python skills

22

23

More logistics

▪ Office hours:
▪ CAs will hold office hours every weekday over Zoom

▪ We will announce the Zoom link: all office hours will use the same Zoom link

▪ Ed
▪ A CA is guaranteed to be available on Ed every weekday (when the school is open)

from 9AM – 5PM. We will try to answer your questions within 1 hour during those time

windows

▪ We will cannot guarantee a fast response when questions are answered not in those

times windows

▪ Submit your assignments on time!
▪ HW submission will be on Gradescope

▪ If you do not submit your HW on time, your grade will be 0%

▪ We will give you plenty of time for the programming assignments, don’t wait until the

last minute!

▪ You can resubmit homework as many times as you want, until the deadline

24

Tentative Contents and Syllabus

– Computer systems and performance rules of thumb
– Latency vs. throughput
– Amdahl’s law
– Back-of-the-envelope systems math
– Performance bottlenecks

– Data centers
– What is a data center?
– Data center failures
– Achieving reliability with smart software
– The rise of AI data centers

– Relational model and SQL
– Relational model and SQL
– SELECT, FROM, WHERE
– GROUPBY
– JOINs
– Nested queries
– Transactions
– ACID
– OLAP vs. OLTP, SQL vs. NoSQL
– Logging

25

Tentative Contents and Syllabus

– Storage systems
– The memory hierarchy
– Storage technologies primer
– Distributed file systems
– Indexing
– Filters
– Caching
– Storage engines
– In-memory key-value stores

– Distributed online databases (OLTP)
– 2 Phase Commit
– Locking
– Sharding
– Fault tolerance
– Replication and consensus

– Analytics (OLAP)
– Mapreduce computing model
– Stragglers
– Lineage
– Fault tolerance in distributed analytics: lineage
– Streaming computing model

26

Tentative Contents and Syllabus

– Single-node ML
– GPUs and ML accelerators
– Kernels, ML compilation
– ML single node bottlenecks
– ML memory

– Distributed ML
– ML network
– Distributed training
– Checkpointing
– Inference systems challenges

– Security and privacy
– Security of big data systems
– Privacy consideration
– Data compliance and access control

– Data observability
– Data monitoring
– Data quality

Performance Concepts and Rules of Thumb

Adapted from David Patterson and Kathryn McKinley

Performance Evaluation

▪ Metric: something we measure

▪ Goal: evaluate how good/bad our computer system is performing

▪ Examples:
– Power consumed by our database

– Cost of running our web application

– Average time it takes to render a user page

– How many users can we support at the same time

▪ Metrics allow us to compare two computer systems

28

Tradeoff: latency vs. throughput

▪ Pizza delivery example
– Do you want your pizza hot?

– Do you want your pizza to be cheap?

▪ Why do these conflict?

▪ Two different strategies for pizza company
– Often we have a requirement for both (I want my pizza to be delivered in X time as

cheaply as possible)

▪ Latency = execution time for a single task

▪ Throughput = number of tasks per unit time

▪ A more relevant example:
– Latency requirement: Assuming cars drive at 65mph, so self driving car needs to

recognize an object in 0.1 seconds

– Throughput requirement: Object recognition system needs to process 1 million object

recognition tasks every second to support 10,000 cars simultaneously
29

Latency vs. Throughput is often a trade off

Plane DC to Paris Speed Passengers Throughput

(pmph)

Boeing 747 6.5 hours 610 mph 470 286,700

Concorde 3 hours 1350 mph 132 178,200

30

▪Which plane has higher performance?

▪ Time to do the task (execution time)
– Latency, execution time, response time

▪ Tasks per day, hour, week, sec (performance)
– Throughput, bandwidth, operations per second

Definitions

▪ Performance is in units of things-per-second
– Bigger is better

▪ Response time of a system Y running Z

– performance 𝑌 =
1

𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑍 𝑜𝑛 𝑌)

▪ Throughput of system Y running many requests

– performance 𝑌 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

▪ “System X is n times faster than Y” means:

– 𝑛 =
𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑋)

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑌)

31

How do we improve performance?

▪ Suppose we have a database that processes two types of queries:
– Query A finishes in 100 seconds

– Query B finishes in 2 seconds

▪ We want better performance
– Which query should we improve?

▪ The answer: it depends!

32

Speedup

▪ Make a change to the system

▪ Measure how much faster/slower it is

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐ℎ𝑎𝑛𝑔𝑒

33

Speedup when we know details about the change

▪ Performance improvement depends on:
– How good is the enhancement? (factor S)

– How often is it used? (factor p)

▪ Speedup due to enhancement E:

– 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐸 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐸

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝐸
=

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝐸

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐸

– 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ 1 − 𝑝 +
𝑝

𝑆

• Explanation:
• 1 − 𝑝 is the fraction of operations that are not affected by E

•
𝑝

𝑆
 is the fraction of operations that are affected by E, with the enhancement factor

– 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 𝐸 =
𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤
=

1

1−𝑝 +
𝑝

𝑆

34

Amdahl’s law: example

▪ We built a new database that speeds up aggregate queries by 2x! Hurray!

▪ But… only 10% of queries are aggregate queries

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ 1 − 𝑝 +
𝑝

𝑆

▪ 𝐸𝑥𝑇𝑖𝑚𝑒𝑛𝑒𝑤 = 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑 ∗ 0.9 +
0.1

2
= 0.95 ∗ 𝐸𝑥𝑇𝑖𝑚𝑒𝑜𝑙𝑑

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑡𝑜𝑡𝑎𝑙 =
1

0.95
= 1.053 → only 5.3% overall speedup

▪ Amdahl’s law: speedup bounded by
1

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑛𝑜𝑡 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑

▪ Even if aggregated queries could be completed in zero time, our maximum

speedup would be:

▪ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
1

0.9
= 1.111

35

Amdahl’s law in simple terms:
Make the common case fast!

Useful back-of-the-envelope latency numbers (all rough estimates)

▪ Time measurements:
– Nanosecond (ns): 1/1,000,000,000 second

– Microsecond (us): 1/1,000,000 second

– Millisecond (ms): 1/1000 second

▪ CPU cache access: 1ns

▪ Memory access: 100ns

▪ Read a small object from a random location on a local flash drive: 50,000ns, 50us

▪ Read a small object within the same network in a data center: 100,000ns, 100us

▪ Run a SQL query on a flash database: 1,000,000ns, 1ms

▪ Read a small random object from magnetic disk: 10,000,000ns, 10ms

▪ Run a SQL query on a disk database: 20,000,000ns, 20ms

▪ Roundtrip time over the internet: 100,000,000ns, 100ms
– Bounded by the speed of light! Roundtrip light speed from NYC to Beijing is ~150ms

36

How can we use these numbers? A database example

▪ Scenario:
– A user application running in the cloud needs to read a small object (e.g., lookup the

student’s name using their CUID).

– It first checks if the object is already saved locally, either in the CPU cache or in memory:
• 10% chance it’s in the CPU cache
• If not, 20% chance it’s in memory

– If not saved locally, it fetches it from a database from within the same network

▪ Compute exepcted latency:

 Prob(CPU) * cache_latency +

 Prob(not in CPU) * (Prob (memory) * memory_latency +

 Prob (not in memory) * database_latency)

▪ 0.1 * cache latency + 0.9 * (0.2 * memory latency + 0.8 * (database latency))

= 0.1ns + 18ns + 0.72 * database latency

▪ Remote database latency = network latency + database latency = 1,100,000ns

▪ Total average latency = 792,018ns or 790us

▪ Total average latency ~= 0.72 * not in memory latency = 792,000ns

▪ → Since 72% requests go to the database and it’s so slow, its latency dominates

the total latency37

Disk vs. Flash, Cost vs. Performance

▪ Your app needs a cloud database that runs SQL queries

▪ You are considering running the database on two types of storage devices: flash vs. magnetic disk
– You received some quotes from database company, and flash database is 2X more expensive, but 10X faster

▪ Your users don’t notice page loading times, as long as they are under 300,000,000ns (300ms)

▪ You measured: Internet roundtrip (100ms), disk DB access (10ms), flash DB access (1ms)

▪ Scenario 1: Your user queries involve only a single database access in the cloud (over the Internet)
– Latency with flash database: 101ms

– Latency with disk database: 110ms

▪ Scenario 2: The app requires getting an initial response from the cloud database, then a user input, and
then another cloud database request

– Latency with flash database: 202ms

– Latency with disk database: 220ms

▪ Scenario 3: The app requires 20 sequential databases accesses within the cloud to compute a single user

query, and then it can return a response
– Latency with flash database: 120ms

– Latency with disk database: 300ms

38

Identifying performance bottlenecks

▪ My application is seeing an average latency of 200ms, where is the bottleneck?

▪ A few guiding questions:
1. What systems does the web page need to access? Which networks does it need to

traverse?

2. Start from the most common case + highest latency

▪ Example:
– Application needs to go through the Internet once ~ 1 * 100ms

– Hits a server that first checks if the request is saved on memory cache in the cloud

~ 0.2 * 100us

– If not (80% of the time), goes over the network and accesses a single disk database

~ 0.8 * 10ms

▪ Guess 1: Internet slowdown (highest latency)

▪ Guess 2: database slowdown (second highest latency)

39

Summary

 Latency and throughput: two important metrics, sometimes correlate,

but often do not

 Amdahl’s law: optimize the common case

 Computer systems almost always involve a performance vs. cost

trade off

40

The Infrastructure of Big Data

Adapted from Mendel Rosenblum and Jeff Dean

Motivating example: Google web search (1999 vs. 2010)

▪ # docs: tens of millions to tens of billions ~1000X

▪ Queries processed/day: ~1000X

▪ Per doc info in index: ~3X

▪ Update latency: months to tens of seconds ~50000X

▪ Average query latency: 1 seconds to 0.2 seconds ~5X

▪ More machines * faster machines: ~1000X

42

Google Circa 1997 (definitely not big data)

43

Google infrastructure circa 1997 could fit in a single room

44

Scaling up

▪ What happens when a server doesn’t fit in a single room?

▪ What happens if we need 1000X more servers?

▪ The cloud to the rescue!
– Also known as… data centers

45

Evolution of data centers

 1960's, 1970's: a few very large time-shared computers

 1980's, 1990's: heterogeneous collection of lots of smaller machines.

 2000-2020:

○ Data centers contain large numbers of nearly identical machines

○ Geographically spread around the world

○ Individual applications can use thousands of machines simultaneously

 2020’s-today:

○ Accelerated construction of AI-specific datacenters

○ Clusters of datacenters in the same region to train massive models

 Companies consider data center technology a trade-secret, especially in the age of AI

○ Limited public discussion of the state of the art from industry leaders

Power is the biggest constraint

47

Datacenter building blocks

Rack

 Typically is 19 or 23 inches wide

 Typically 42 U
○ U or RU is a Rack Unit - 1.75 inches

 Slots:

Rack Slots

 Slots hold power distribution, servers, storage, networking equipment

 Typical server: 2U
○ 128-192 cores

○ DRAM: 256-512 GB

 Typical storage: 2U
 30 drives

 Typical Network: 1U
○ 72 100Gb/s

Row/Cluster

 30+ racks

Lecture 2

Networking - Switch locations

 Top-of-rack switch
○ Connecting machines in rack

○ Multiple links going to end-of-row routers

 End-of-row router
○ Aggregate row of machines

○ Multiple links going to core routers

 Core router
○ Multiple core routers

 Each of these have different latencies, throughput

Multipath routing

Ideal: "full bisection bandwidth"

 Would like network where everyone has a private channel to everyone else

○ (cross-bar topology)

○ Why is this useful?

 In practice, today:

○ Assumes applications have locality to rack or row but this is hard to achieve in

practice.

Power Usage Effectiveness (PUE)

 Early data centers built with off-the-shelf components
○ Standard servers

○ HVAC unit designs from malls

PUE ratio = Total Facility Power
 Server/Network Power

Inefficient: early data centers had PUE of 1.7-2.0

 Average PUE for Google datacenters today: 1.1 (only 10% from optimal!)

 Power is about 25% of monthly operating cost

○ And is a limiting factor in how large the datacenter can be

Energy Efficient Data Centers

 Better power distribution - Fewer transformers

 Better cooling - use environment (air/water) rather than air conditioning
○ Bring in outside air

○ Evaporate some water

 IT Equipment range
○ OK up to +115℉

Liquid immersion is the “hottest” new technology for cooling
datacenters

58

Backup Power

 Massive amount of batteries to tolerate short glitches in power
○ Just need long enough for backup generators to startup

 How do glitches occur?

○ Thunder, earthquake, power loss from power company, cyber attack, …

 Massive collections of backup generators

 Huge fuel tanks to provide fuel for the generators

 Fuel replenishment transportation network (e.g. fuel trucks)

Energy sources

 Increasingly, data centers powered by renewable energy

○ But, solar/wind are intermittent

○ Hydro, nuclear are more reliable

 In practice, many new data centers powered by solar / wind but might still rely

on fossil fuels from the electric grid when the wind isn’t blowing / sun isn’t
shining

60

Fault Tolerance

 At the scale of new data centers, things are breaking constantly

 Every aspect of the data center must be able to tolerate failures

 Solution: Redundancy
○ Multiple independent copies of all data

○ Multiple independent network connections

○ Multiple copies of every services

Failures in first year for a new data center (Jeff Dean)

~thousands of hard drive failures

~1000 individual machine failures

~dozens of minor 30-second blips for DNS

~3 router failures (have to immediately pull traffic for an hour)

~12 router reloads (takes out DNS and external VIPs for a couple minutes)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)

~5 racks go wonky (40-80 machines see 50% packet loss)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~1 network rewiring (rolling ~5% of machines down over 2-day span)

~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)

~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)

→ Reliability must come from software!

AI datacenters

 Today: mostly focused on large-scale AI training

 In the future: inference, especially for inference-expensive reasoning models

 Built by a relatively small number of companies

○ Hyperscalers like Microsoft, Google, Amazon, Meta

○ Nation states: UAE, Saudi Arabia, …

○ “Neoclouds”: Crusoe, CoreWeave, Nebius, Lambda Labs

63

Comparing AI datacenters to traditional ones

 Similarities

○ Same rack/row topology

○ Cooling still a big problem (e.g., GPU immersive cooling is coming soon)

 Differences

○ Compute: Thousands of GPUs, small ratio of CPU/GPU

○ Memory: Don’t need as much traditional CPU memory, require lots of on-GPU

High Bandwidth Memory (HBM), which is much more expensive

○ Network: AI training has much more demanding networking requirements.

Requires dedicated high-bandwidth networking both within a server (e.g., NVIDIA’s

NVLINK) and across servers (e.g., Infiniband)

 We will cover these topics more deeply in the second half of the class

64

Where should you build your datacenter?

 Plentiful, inexpensive electricity
○ Examples - Oregon: Hydroelectric; Iowa: Wind

○ Increasingly: nuclear, thermal

 Good network connections
○ Access to the Internet backbone

 Inexpensive land

 Geographically near users
○ Speed of light latency

○ Country laws (e.g. Our citizen's data must be kept in our county.)

 Available labor pool

 Politics

○ Tax breaks

○ AI regulations

Google Data Center - Council Bluffs, Iowa, USA

Source: semianalysis

Google data center pictures: Council Bluffs

Datacenter “megasites”

68
Source: semianalysis

 Four Google datacenter sites within a 50-mile radius of each other, in the

Iowa/Nebraska region

 May reach GW of total power consumption

Summary

 It’s easy as data scientists (or software engineers) to lose sight that

our code actually runs somewhere physically

 The cloud is not some abstract concept: these are huge physical sites

consuming power equivalent to entire cities

 AI is accelerating the construction of new data centers

 Datacenter sustainability (especially in the age of AI) is going to be

extremely important in the coming years

69

	Slide 1: Lecture 1
	Slide 2: Computer Systems for Data Science Topic 1
	Slide 3: Topic 1: Agenda
	Slide 4: Who Are We?
	Slide 5: Course Instructors and TAs
	Slide 6: What is Data Science and Big Data?
	Slide 7: This was a system for big data
	Slide 8: Data science systems were expensive
	Slide 9: Today: data is cheap
	Slide 10: Where is data coming from?
	Slide 11: Where is data coming from?
	Slide 12: Where is data coming from?
	Slide 13: Where is data coming from?
	Slide 14: Where is data coming from?
	Slide 15: Where is data coming from?
	Slide 16: What can we do with all this data?
	Slide 17: What is big data?
	Slide 18: Ok… But what is this class about?
	Slide 19: Our focus in this class: Computer Systems for Data Science
	Slide 20: Course Objectives
	Slide 21: Course Administration and Grading
	Slide 22: Programming Assignments
	Slide 23: More logistics
	Slide 24: Tentative Contents and Syllabus
	Slide 25: Tentative Contents and Syllabus
	Slide 26: Tentative Contents and Syllabus
	Slide 27: Performance Concepts and Rules of Thumb
	Slide 28: Performance Evaluation
	Slide 29: Tradeoff: latency vs. throughput
	Slide 30: Latency vs. Throughput is often a trade off
	Slide 31: Definitions
	Slide 32: How do we improve performance?
	Slide 33: Speedup
	Slide 34: Speedup when we know details about the change
	Slide 35: Amdahl’s law: example
	Slide 36: Useful back-of-the-envelope latency numbers (all rough estimates)
	Slide 37: How can we use these numbers? A database example
	Slide 38: Disk vs. Flash, Cost vs. Performance
	Slide 39: Identifying performance bottlenecks
	Slide 40: Summary
	Slide 41: The Infrastructure of Big Data
	Slide 42: Motivating example: Google web search (1999 vs. 2010)
	Slide 43: Google Circa 1997 (definitely not big data)
	Slide 44: Google infrastructure circa 1997 could fit in a single room
	Slide 45: Scaling up
	Slide 46: Evolution of data centers
	Slide 47: Power is the biggest constraint
	Slide 48: Datacenter building blocks
	Slide 49: Rack
	Slide 50: Rack Slots
	Slide 51: Row/Cluster
	Slide 52: Lecture 2
	Slide 53: Networking - Switch locations
	Slide 54: Multipath routing
	Slide 55: Ideal: "full bisection bandwidth"
	Slide 56: Power Usage Effectiveness (PUE)
	Slide 57: Energy Efficient Data Centers
	Slide 58: Liquid immersion is the “hottest” new technology for cooling datacenters
	Slide 59: Backup Power
	Slide 60: Energy sources
	Slide 61: Fault Tolerance
	Slide 62: Failures in first year for a new data center (Jeff Dean)
	Slide 63: AI datacenters
	Slide 64: Comparing AI datacenters to traditional ones
	Slide 65: Where should you build your datacenter?
	Slide 66: Google Data Center - Council Bluffs, Iowa, USA
	Slide 67: Google data center pictures: Council Bluffs
	Slide 68: Datacenter “megasites”
	Slide 69: Summary

