

COMS4121 Assignment 2: Supplement
This is a supplement reading to provide you more context for the assignment. Hopefully, it will be
helpful. This doc is by no means an official document. Some of the descriptions are not precise
but it might provide you some sense on this project so it will make it easier to get started.

We should first start with the way Google described Dataproc: "Dataproc makes open source data
and analytics processing fast, easy, and more secure in the cloud." Which apparently makes it more
attractive to customers.

VMs / Compute Engine

One of the confusion points for people who don't have experience with computer systems or
cloud computing is the idea of VMs. As we learned earlier in the course, the basic unit of a cloud
warehouse is the server. Each server is similar to your laptop. They would have CPU(s), memory
and disk. VM are virtual computers that run on top of servers. VM software such as ESXi virtually
separates those resources and make them look like separate servers. As a result, you could treat
each VM as a standalone server.

af://n2
af://n5

Google Cloud Computer Engine, in essence, provides you a VM whenever you create an instance
on it.

When you start an instance you could configure your machine and choose how much resources
you would want on your VM.

Google Cloud Storage / S3

Google Cloud Storage / S3 provides data storage on the cloud.

One good comparison is to compare it with Google Drive. The basically functionality are the
same. You upload your document to Google Drive and then you document is on Google Server
and then you would share the document with anybody who has access to internet.

For Google Drive, the main user will be human, so the files are usually documents, slide decks,
forms or pictures. Also, it provides better user interfaces.

In contrast, the users of Cloud Storage or S3 are usually programs. As a result, the file could be
any type (large or small different formats). They may not even make sense to human being and
the idea of file is simply a chunk of data.

This 7-minute video goes into this topic deeper.

af://n11
https://www.youtube.com/watch?v=vyIap827rHs&feature=youtu.be&index=6&list=PLOU2XLYxmsIIGo6tf3yFhif9VUSzxjYUT

A short tutorial on Google Cloud Storage:

The idea of a folder on Google Drive translates to bucket on Google Cloud Storage.

To Create a bucket, you would go to the Storage page on Google Cloud and click on CREATE
BUCKET. In most cases you could just name the bucket and use default settings for other
properties.

To upload files (e.g. your python file) from your computer you could simply drag and drop the
files into the UI and it will be uploaded. To get the URI of the file, click on the name of the file and
it would be on the next screen.

Dataproc

Google listed the following as one of the key features of Dataproc: "Managed deployment, logging,
and monitoring let you focus on your data, not on your cluster. Dataproc clusters are stable, scalable,
and speedy." Which definitely makes it more attractive to customers. If you ever need to
configure one of the Spark sever you will find it tedious and time consuming. And Google has
done that for us.

Once the Dataproc cluster is ready, it would have:

N Compute Engine VMs (3 if you started a 3 node cluster). One of the VM will be the Name
Node and the others will be worker nodes.

The following software would have been installed and configured for you automatically, all
of them are installed on the VMs:

HDFS: The Hadoop Distributed File System (HDFS) is a highly fault tolerant file system
designed and optimized to be deployed on a distributed infrastructure.
YARN: (yet another resource negotiator) is Hadoop’s popular resource scheduling
cluster manager. So
SPARK: Apache spark is a unified analytics engine for large-scale data processing.

af://n22
https://medium.com/develbyte/hdfs-architecture-b7cdbb2bb24b
https://medium.com/@meenakshisundaramsekar/spark-applications-running-on-yarn-in-a-nutshell-d73f2c19f21b

Also, if there are extra components such as Jupyter notebook added while configuring the VMs
they will also be installed and configured. Notice that the notebooks that you created are written
to the staging bucket on the Cloud Storage so even if you delete your cluster, you will be able to
get your notebook files back. However, HDFS files are saved on disks and they will be lost if you
delete the cluster.

HDFS

Like described in the lecture, HDFS is a distributed file system that stores data across different
machines.

Here, the more confusing part is probably the relationship between Spark and HDFS.

In short, Spark is an analytics engine and it does not handle how the data is stored. HDFS
provides the functionality of saving data across servers to Spark and Spark read and write data
through HDFS

af://n41

Another potential confusion point is the relationship between HDFS and the local file system. And
by local, I mean the file system that already existed on the VMs. In general, a local file system is
related to only one server, it manages all the file on that server. While HDFS, creates an
abstraction as if all the different servers are one machine and files could be read from it and
write to it.

This video gives concrete examples to discuss the difference between HDFS and the local file
system.

Spark Architecture

The major components of Spark are the Driver, the Cluster Manager, and the Executors.

Spark Driver: After you submit the job, the driver is the major component that controls the
workflow. It would first come up with the DAG (Direct Acyclic Graph)/action plan mentioned in the
lecture and then send works to executors which are contained in the worker node(s).

As you can see, a job is split into tasks and stages. Many times some optimization would be done
on the DAG for better performance.

https://www.youtube.com/watch?v=D0n90c4cjD8
af://n49

Spark Context: On the lecture slides you have seen it many times as variable name sc. Each time
you submit a job, the Spark Driver would create an instance of an application and that instance of
the application is called the context of that application. The context will be destroyed when the
job is finished.

Spark Executors: After the action plan is made up by a Spark Driver, executors are the actual
workers that finish those tasks stage by stage.

Cluster Manager: Cluster manager monitors and controls the computational resources on the
Worker Nodes and it is responsible for allocating resources to jobs (especially when multiple jobs
are submitted at the same time). Spark Master plays the role of cluster manager when there is
no other manager. Dataproc uses YARN as the Cluster Manager and more discussion about it will
come in the next section.

YARN

Once the user submits the spark job to the YARN Resource Manager which is the cluster
manager, it creates a YARN application master which would serve as the application master. The
Spark Driver which is responsible for spark program is also created at the same instance.

YARN virtually separates computing resources into small units called containers. The application
master will reserve containers for their tasks and YARN would allocate containers to them.

There are two modes for YARN. Client mode and Cluster mode. The default running mode on
Dataproc is the Client mode.

The major difference is that whether Spark Driver runs inside the YARN cluster or not. The
detailed difference is outside of the scope of this course and this blog post might be helpful if you
want to learn more about YARN.

af://n61
https://medium.com/@meenakshisundaramsekar/spark-applications-running-on-yarn-in-a-nutshell-d73f2c19f21b

Client mode:

Cluster mode:

Comparision:

Regular Expression

In part 1 task 2 of the homework, you are asked to extract internal links from the text field. One
of the way to do it is to use regular expression.

Regular expressions, commonly known as regex or regexp, uses a sequence of characters to
create a searchable pattern. The pattern then would be applied over text or data to find strings
that matches the pattern.

Here is an simple example using python:

Here the '.' would match any character and * means it would match '.' zero or more repetitions.

So any string that contains "The" at the beginning and ending with "NewYork" would match the
pattern.

Here is a short tutorial that you could get some practice or brush up your regex skill.

One good practice is to use online regular expression testers such as this one to debug your
regular expression before you apply them in your program.

UDF

In traditional SQL environments, SQL syntax doesn't allow you to define functions to take in input
argument(s) and output some result, and many databases allow you to define User Defined
Functions to achieve that.

In the context of Spark Dataframe, UDFs transform values from a single row within a table to
produce a single corresponding output value per row.

Here is an example UDF from Stack Overflow:

import re

text = "The park in NewYork"

x = re.search("The.*NewYork", txt)

af://n74
https://regexone.com/
https://regex101.com/
af://n86
https://stackoverflow.com/questions/49538327/pyspark-string-pattern-from-columns-values-and-regexp-expression

The task was to use the word that appeared before the Key_word to construct the
word_bef_key_word column. The result would be like the following table. For example, the word
text appeared before the word tree in the first row and the value on the third column became
text after the operation.

Here is one of the answers that used user defined functions:

Spark Dataframe Operations

In the lecture, many RDD operations have been taught and the slide deck is the best place to find
some of the useful RDD operations. Here we have listed some of the useful Dataframe
operations which are from thisdocumentation.

cache ()[source]

Persists the DataFrame with the default storage level (MEMORY_AND_DISK).

+--+----------+

| Text | Key_word |

+--+----------+

| First random text tree cheese cat | tree |

| Second random text apple pie three | text |

| Third random text burger food brain | brain |

| Fourth random text nothing thing chips | random |

+--+----------+

+--+----------+-------------------+--+

| Text | Key_word | word_bef_key_word | |

+--+----------+-------------------+--+

| First random text tree cheese cat | tree | text | |

| Second random text apple pie three | text | random | |

| Third random text burger food brain | brain | food | |

| Fourth random text nothing thing chips | random | Fourth | |

+--+----------+-------------------+--+

import re

from pyspark.sql.functions import udf

def get_previous_word(text, key_word):

 matches = re.findall(r'\w+(?= {kw})'.format(kw=key_word), text)

 return matches[0] if matches else None

get_previous_word_udf = udf(

 lambda text, key_word: get_previous_word(text, key_word),

 StringType()

)

df = df.withColumn('word_bef_key_word', get_previous_word_udf('Text',

'Key_word'))

af://n98
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.cache
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame

 dropna (how='any', thresh=None, subset=None)[source]

collect ()[source]

Returns all the records as a list of Row .

property columns

Returns all column names as a list.

count ()[source]

Returns the number of rows in this DataFrame .

distinct ()[source]

Returns a new DataFrame containing the distinct rows in this DataFrame .

dropna (how='any', thresh=None, subset=None)[source]

Returns a new DataFrame omitting rows with null values. DataFrame.dropna() and
DataFrameNaFunctions.drop() are aliases of each other.

Parameters

how – ‘any’ or ‘all’. If ‘any’, drop a row if it contains any nulls. If ‘all’, drop a row only if all its
values are null.

thresh – int, default None If specified, drop rows that have less than thresh non-null values.
This overwrites the how parameter.

subset – optional list of column names to consider.

>>> df.collect()

[Row(age=2, name='Alice'), Row(age=5, name='Bob')]

>>> df.columns

['age', 'name']

>>> df.count()

2

>>> df.distinct().count()

2

https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.dropna
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.collect
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Row
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.count
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.distinct
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.dropna
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.dropna
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrameNaFunctions.drop

filter (condition)[source]

Filters rows using the given condition.

where() is an alias for filter() .

Parameters

condition – a Column of types.BooleanType or a string of SQL expression.

first ()[source]

Returns the first row as a Row .

foreach (f)[source]

Applies the f function to all Row of this DataFrame .

This is a shorthand for df.rdd.foreach() .

groupBy (*cols)[source]

Groups the DataFrame using the specified columns, so we can run aggregation on them. See
GroupedData for all the available aggregate functions.

>>> df4.na.drop().show()

+---+------+-----+

|age|height| name|

+---+------+-----+

| 10| 80|Alice|

+---+------+-----+

>>> df.filter(df.age > 3).collect()

[Row(age=5, name='Bob')]

>>> df.where(df.age == 2).collect()

[Row(age=2, name='Alice')]

>>> df.filter("age > 3").collect()

[Row(age=5, name='Bob')]

>>> df.where("age = 2").collect()

[Row(age=2, name='Alice')]

>>> df.first()

Row(age=2, name='Alice')

>>> def f(person):

... print(person.name)

>>> df.foreach(f)

https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.filter
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.where
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.filter
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Column
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.types.BooleanType
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.first
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Row
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.foreach
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Row
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.groupBy
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.GroupedData

groupby() is an alias for groupBy() .

Parameters

cols – list of columns to group by. Each element should be a column name (string) or an
expression (Column).

head (n=None)[source]

Returns the first n rows.

Note

This method should only be used if the resulting array is expected to be small, as all the data is
loaded into the driver’s memory.

Parameters

n – int, default 1. Number of rows to return.

Returns

If n is greater than 1, return a list of Row . If n is 1, return a single Row.

join (other, on=None, how=None)[source]

Joins with another DataFrame , using the given join expression.

Parameters

other – Right side of the joinon – a string for the join column name, a list of column names,
a join expression (Column), or a list of Columns. If on is a string or a list of strings indicating
the name of the join column(s), the column(s) must exist on both sides, and this performs an
equi-join.how – str, default inner . Must be one of: inner , cross , outer , full ,
full_outer , left , left_outer , right , right_outer , left_semi , and left_anti .

The following performs a full outer join between df1 and df2 .

>>> df.groupBy().avg().collect()

[Row(avg(age)=3.5)]

>>> sorted(df.groupBy('name').agg({'age': 'mean'}).collect())

[Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)]

>>> sorted(df.groupBy(df.name).avg().collect())

[Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)]

>>> sorted(df.groupBy(['name', df.age]).count().collect())

[Row(name='Alice', age=2, count=1), Row(name='Bob', age=5, count=1)]

>>> df.head()

Row(age=2, name='Alice')

>>> df.head(1)

[Row(age=2, name='Alice')]

https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.groupby
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.groupBy
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Column
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.head
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Row
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.join
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame

limit (num)[source]

Limits the result count to the number specified.

orderBy (cols*, *kwargs*)

Returns a new DataFrame sorted by the specified column(s).

Parameters

cols – list of Column or column names to sort by.ascending – boolean or list of boolean
(default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is
specified, length of the list must equal length of the cols.

printSchema ()[source]

Prints out the schema in the tree format.

>>> df.join(df2, df.name == df2.name, 'outer').select(df.name,

df2.height).collect()

[Row(name=None, height=80), Row(name='Bob', height=85), Row(name='Alice',

height=None)]

>>> df.join(df2, 'name', 'outer').select('name', 'height').collect()

[Row(name='Tom', height=80), Row(name='Bob', height=85), Row(name='Alice',

height=None)]

>>> cond = [df.name == df3.name, df.age == df3.age]

>>> df.join(df3, cond, 'outer').select(df.name, df3.age).collect()

[Row(name='Alice', age=2), Row(name='Bob', age=5)]

>>> df.join(df2, 'name').select(df.name, df2.height).collect()

[Row(name='Bob', height=85)]

>>> df.join(df4, ['name', 'age']).select(df.name, df.age).collect()

[Row(name='Bob', age=5)]

>>> df.limit(1).collect()

[Row(age=2, name='Alice')]

>>> df.limit(0).collect()

[]

>>> df.sort(df.age.desc()).collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

>>> df.sort("age", ascending=False).collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

>>> df.orderBy(df.age.desc()).collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

>>> from pyspark.sql.functions import *

>>> df.sort(asc("age")).collect()

[Row(age=2, name='Alice'), Row(age=5, name='Bob')]

>>> df.orderBy(desc("age"), "name").collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

>>> df.orderBy(["age", "name"], ascending=[0, 1]).collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.limit
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Column
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.printSchema

repartition (numPartitions, *cols)[source]

Returns a new DataFrame partitioned by the given partitioning expressions. The resulting
DataFrame is hash partitioned.

Parameters

numPartitions – can be an int to specify the target number of partitions or a Column. If it is
a Column, it will be used as the first partitioning column. If not specified, the default number
of partitions is used.

Changed in version 1.6: Added optional arguments to specify the partitioning columns. Also made
numPartitions optional if partitioning columns are specified.

>>> df.printSchema()

root

 |-- age: integer (nullable = true)

 |-- name: string (nullable = true)

>>> df.repartition(10).rdd.getNumPartitions()

10

>>> data = df.union(df).repartition("age")

>>> data.show()

+---+-----+

|age| name|

+---+-----+

| 5| Bob|

| 5| Bob|

| 2|Alice|

| 2|Alice|

+---+-----+

>>> data = data.repartition(7, "age")

>>> data.show()

+---+-----+

|age| name|

+---+-----+

| 2|Alice|

| 5| Bob|

| 2|Alice|

| 5| Bob|

+---+-----+

>>> data.rdd.getNumPartitions()

7

>>> data = data.repartition("name", "age")

>>> data.show()

+---+-----+

|age| name|

+---+-----+

| 5| Bob|

| 5| Bob|

| 2|Alice|

| 2|Alice|

+---+-----+

https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.repartition
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame

select (*cols)[source]

Projects a set of expressions and returns a new DataFrame .

Parameters

cols – list of column names (string) or expressions (Column). If one of the column names is
‘*’, that column is expanded to include all columns in the current DataFrame .

selectExpr (*expr)[source]

Projects a set of SQL expressions and returns a new DataFrame .

This is a variant of select() that accepts SQL expressions.

show (n=20, truncate=True, vertical=False)[source]

Prints the first n rows to the console.

Parameters

n – Number of rows to show.truncate – If set to True , truncate strings longer than 20 chars
by default. If set to a number greater than one, truncates long strings to length truncate
and align cells right.vertical – If set to True , print output rows vertically (one line per
column value).

>>> df.select('*').collect()

[Row(age=2, name='Alice'), Row(age=5, name='Bob')]

>>> df.select('name', 'age').collect()

[Row(name='Alice', age=2), Row(name='Bob', age=5)]

>>> df.select(df.name, (df.age + 10).alias('age')).collect()

[Row(name='Alice', age=12), Row(name='Bob', age=15)]

>>> df.selectExpr("age * 2", "abs(age)").collect()

[Row((age * 2)=4, abs(age)=2), Row((age * 2)=10, abs(age)=5)]

>>> df

DataFrame[age: int, name: string]

>>> df.show()

+---+-----+

|age| name|

+---+-----+

| 2|Alice|

| 5| Bob|

+---+-----+

>>> df.show(truncate=3)

+---+----+

|age|name|

+---+----+

| 2| Ali|

| 5| Bob|

+---+----+

>>> df.show(vertical=True)

-RECORD 0-----

https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.select
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Column
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.selectExpr
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame.select
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.show

sort (cols*, *kwargs*)[source]

Returns a new DataFrame sorted by the specified column(s).

Parameters

cols – list of Column or column names to sort by.ascending – boolean or list of boolean
(default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is
specified, length of the list must equal length of the cols.

toDF (*cols)[source]

Returns a new class:DataFrame that with new specified column names

Parameters

cols – list of new column names (string)

withColumn (colName, col)[source]

Returns a new DataFrame by adding a column or replacing the existing column that has the
same name.

The column expression must be an expression over this DataFrame ; attempting to add a column
from some other DataFrame will raise an error.

Parameters

colName – string, name of the new column.col – a Column expression for the new column.

 age | 2

 name | Alice

-RECORD 1-----

 age | 5

 name | Bob

>>> df.sort(df.age.desc()).collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

>>> df.sort("age", ascending=False).collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

>>> df.orderBy(df.age.desc()).collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

>>> from pyspark.sql.functions import *

>>> df.sort(asc("age")).collect()

[Row(age=2, name='Alice'), Row(age=5, name='Bob')]

>>> df.orderBy(desc("age"), "name").collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

>>> df.orderBy(["age", "name"], ascending=[0, 1]).collect()

[Row(age=5, name='Bob'), Row(age=2, name='Alice')]

>>> df.toDF('f1', 'f2').collect()

[Row(f1=2, f2='Alice'), Row(f1=5, f2='Bob')]

https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.sort
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Column
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.toDF
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/dataframe.html#DataFrame.withColumn
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrame
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Column

avg (*cols)[source]

Computes average values for each numeric columns for each group.

mean() is an alias for avg() .

Parameters

cols – list of column names (string). Non-numeric columns are ignored.

class pyspark.sql.``Column (jc)[source]

A column in a DataFrame.

Column instances can be created by:

desc ()

Returns a sort expression based on the descending order of the column.

isNotNull ()

True if the current expression is NOT null.

>>> df.withColumn('age2', df.age + 2).collect()

[Row(age=2, name='Alice', age2=4), Row(age=5, name='Bob', age2=7)]

>>> df.groupBy().avg('age').collect()

[Row(avg(age)=3.5)]

>>> df3.groupBy().avg('age', 'height').collect()

[Row(avg(age)=3.5, avg(height)=82.5)]

1. Select a column out of a DataFrame

df.colName

df["colName"]

2. Create from an expression

df.colName + 1

1 / df.colName

>>> from pyspark.sql import Row

>>> df = spark.createDataFrame([('Tom', 80), ('Alice', None)], ["name",

"height"])

>>> df.select(df.name).orderBy(df.name.desc()).collect()

[Row(name='Tom'), Row(name='Alice')]

https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/group.html#GroupedData.avg
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.GroupedData.mean
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.GroupedData.avg
https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/column.html#Column
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Column

isNull ()

True if the current expression is null.

>>> from pyspark.sql import Row

>>> df = spark.createDataFrame([Row(name='Tom', height=80), Row(name='Alice',

height=None)])

>>> df.filter(df.height.isNotNull()).collect()

[Row(height=80, name='Tom')]

>>> from pyspark.sql import Row

>>> df = spark.createDataFrame([Row(name='Tom', height=80), Row(name='Alice',

height=None)])

>>> df.filter(df.height.isNull()).collect()

[Row(height=None, name='Alice')]

	COMS4121 Assignment 2: Supplement
	VMs / Compute Engine
	Google Cloud Storage / S3
	Dataproc
	HDFS
	Spark Architecture
	YARN
	Regular Expression
	UDF
	Spark Dataframe Operations

